Suppr超能文献

单细胞蓝藻菌株ATCC 51142碳氮同化的时间模式以及细胞内和细胞间变异性

Temporal Patterns and Intra- and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium sp. ATCC 51142.

作者信息

Polerecky Lubos, Masuda Takako, Eichner Meri, Rabouille Sophie, Vancová Marie, Kienhuis Michiel V M, Bernát Gabor, Bonomi-Barufi Jose, Campbell Douglas Andrew, Claquin Pascal, Červený Jan, Giordano Mario, Kotabová Eva, Kromkamp Jacco, Lombardi Ana Teresa, Lukeš Martin, Prášil Ondrej, Stephan Susanne, Suggett David, Zavřel Tomas, Halsey Kimberly H

机构信息

Department of Earth Sciences, Utrecht University, Utrecht, Netherlands.

Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia.

出版信息

Front Microbiol. 2021 Feb 4;12:620915. doi: 10.3389/fmicb.2021.620915. eCollection 2021.

Abstract

Unicellular nitrogen fixing cyanobacteria (UCYN) are abundant members of phytoplankton communities in a wide range of marine environments, including those with rapidly changing nitrogen (N) concentrations. We hypothesized that differences in N availability (N vs. combined N) would cause UCYN to shift strategies of intracellular N and C allocation. We used transmission electron microscopy and nanoscale secondary ion mass spectrometry imaging to track assimilation and intracellular allocation of C-labeled CO and N-labeled N or NO at different periods across a diel cycle in sp. ATCC 51142. We present new ideas on interpreting these imaging data, including the influences of pre-incubation cellular C and N contents and turnover rates of inclusion bodies. Within cultures growing diazotrophically, distinct subpopulations were detected that fixed N at night or in the morning. Additional significant within-population heterogeneity was likely caused by differences in the relative amounts of N assimilated into cyanophycin from sources external and internal to the cells. Whether growing on N or NO, cells prioritized cyanophycin synthesis when N assimilation rates were highest. N assimilation in cells growing on NO switched from cyanophycin synthesis to protein synthesis, suggesting that once a cyanophycin quota is met, it is bypassed in favor of protein synthesis. Growth on NO also revealed that at night, there is a very low level of CO assimilation into polysaccharides simultaneous with their catabolism for protein synthesis. This study revealed multiple, detailed mechanisms underlying C and N management in that facilitate its success in dynamic aquatic environments.

摘要

单细胞固氮蓝细菌(UCYN)是广泛海洋环境中浮游植物群落的重要组成部分,包括那些氮(N)浓度快速变化的环境。我们假设氮有效性的差异(N与化合态氮)会导致UCYN改变细胞内氮和碳分配策略。我们使用透射电子显微镜和纳米级二次离子质谱成像技术,追踪了聚球藻属ATCC 51142在一个昼夜周期不同时间段内碳标记的CO₂和氮标记的N₂或NO₃⁻的同化和细胞内分配情况。我们提出了关于解释这些成像数据的新观点,包括预培养细胞碳和氮含量的影响以及包涵体的周转率。在以固氮方式生长的培养物中,检测到了在夜间或早晨固氮的不同亚群。种群内部额外的显著异质性可能是由于细胞内外源氮同化到藻青素中的相对量不同所致。无论生长在N₂还是NO₃⁻上,当氮同化率最高时,细胞都会优先进行藻青素合成。在NO₃⁻上生长的细胞的氮同化从藻青素合成转变为蛋白质合成,这表明一旦达到藻青素配额,就会转而进行蛋白质合成。在NO₃⁻上生长还表明,在夜间,多糖的CO₂同化水平非常低,同时多糖被分解用于蛋白质合成。这项研究揭示了聚球藻属中碳和氮管理的多种详细机制,这些机制有助于其在动态水生环境中取得成功。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e038/7890256/d49714df304a/fmicb-12-620915-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验