Suppr超能文献

用于太阳能电池应用的硒化镉量子点:综述

Cadmium Selenide Quantum Dots for Solar Cell Applications: A Review.

作者信息

Rahman Mohammad Mominur, Karim Mohammad Rezaul, Alharbi Hamad F, Aldokhayel Belal, Uzzaman Tauriq, Zahir Hasan

机构信息

Department of Electrical Engineering, King Saud University, Riyadh, 11421, Saudi Arabia.

Center of Excellence for Research in Engineering Materials, King Saud University, Riyadh, 11421, Saudi Arabia.

出版信息

Chem Asian J. 2021 Apr 19;16(8):902-921. doi: 10.1002/asia.202001369. Epub 2021 Mar 18.

Abstract

Quantum dot-sensitized solar cells (QDSSCs) are significant energy-producing devices due to their remarkable capability to growing sunshine and produce many electrons/holes pairs, easy manufacturing, and low cost. However, their power conversion efficiency (4%) is usually worse than that of dye-sensitized solar cells (≤12%); this is mainly due to their narrow absorption areas and the charge recombination happening at the quantum dot/electrolyte and Ti /electrolyte interfaces. Thus, to raise the power conversion efficiency of QDSSC, new counter electrodes, working electrodes, sensitizers, and electrolytes are required. CdSe thin films have shown great potential for use in photodetectors, solar cells, biosensors, light-emitting diodes, and biomedical imaging systems. This article reviews the CdSe nanomaterials that have been recently used in QDSSCs as sensitizers. Their size, design, morphology, and density all noticeably influence the electron injection efficiency and light-harvesting capacity of these devices. A detailed overview of the development of QDSSCs is presented, including their basic principles, the synthesis methods for their CdSe quantum dots, and the device fabrication processes. Finally, the challenges and opportunities of realizing high-performance CdSe QDSSCs are discussed and some future directions are suggested.

摘要

量子点敏化太阳能电池(QDSSCs)是重要的能量产生装置,因为它们具有显著的吸收阳光并产生大量电子/空穴对的能力、易于制造且成本低廉。然而,它们的功率转换效率(4%)通常低于染料敏化太阳能电池(≤12%);这主要是由于它们的吸收区域狭窄以及在量子点/电解质和钛/电解质界面发生的电荷复合。因此,为了提高QDSSC的功率转换效率,需要新型的对电极、工作电极、敏化剂和电解质。CdSe薄膜在光电探测器、太阳能电池、生物传感器、发光二极管和生物医学成像系统中显示出巨大的应用潜力。本文综述了最近在QDSSCs中用作敏化剂的CdSe纳米材料。它们的尺寸、设计、形态和密度都显著影响这些器件的电子注入效率和光捕获能力。本文详细概述了QDSSCs的发展,包括其基本原理、CdSe量子点的合成方法以及器件制造工艺。最后,讨论了实现高性能CdSe QDSSCs面临的挑战和机遇,并提出了一些未来的发展方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验