Suppr超能文献

构象变化对溶液相表面增强拉曼光谱结构见解的影响。

Effects of Conformational Variation on Structural Insights from Solution-Phase Surface-Enhanced Raman Spectroscopy.

机构信息

Department of Physics & Astronomy, Rice University, Houston, Texas 77005-1892, United States.

Department of Physics & Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249-1644, United States.

出版信息

J Phys Chem B. 2021 Mar 4;125(8):2031-2041. doi: 10.1021/acs.jpcb.0c10576. Epub 2021 Feb 22.

Abstract

Surface-enhanced Raman scattering (SERS) spectra contain information on the chemical structure on nanoparticle surfaces through the position and alignment of molecules with the electromagnetic near field. Time-dependent density functional theory (TDDFT) can provide the Raman tensors needed for a detailed interpretation of SERS spectra. Here, the impact of molecular conformations on SERS spectra is considered. TDDFT calculations of the surfactant cetyltrimethylammonium bromide with five conformers produced more accurate unenhanced Raman spectra than a simple all-trans structure. The calculations and measurements also demonstrated a loss of structural information in the CH/CH scissor vibration band at 1450 cm in the SERS spectra. To study lipid bilayers, TDDFT calculations on conformers of methyl phosphorylcholine and -5-decene served as models for the symmetric choline stretch in the lipid headgroup and the C═C stretch in the acyl chains of 1,2-oleoyl--3-phosphocholine. Conformer considerations enabled a measurement of the distribution of double-bond orientations with an order parameter of = 0.53.

摘要

表面增强拉曼散射(SERS)光谱通过分子与电磁场近场的位置和排列包含有关纳米粒子表面化学结构的信息。时间依赖密度泛函理论(TDDFT)可以为 SERS 光谱的详细解释提供所需的拉曼张量。在这里,考虑了分子构象对 SERS 光谱的影响。用五种构象进行的表面活性剂十六烷基三甲基溴化铵的 TDDFT 计算产生的未增强拉曼光谱比简单的全反式结构更准确。计算和测量还表明,在 SERS 光谱中,1450 cm 处的 CH/CH 剪刀振动带的结构信息丢失。为了研究脂质双层,对甲基磷酸胆碱和 -5-癸烯构象的 TDDFT 计算用作脂质头部中对称胆碱伸展和 1,2-油酰基- -3-磷酸胆碱中酰基链中 C═C 伸展的模型。构象考虑使能够用序参数 = 0.53 测量双键取向的分布。

相似文献

1
Effects of Conformational Variation on Structural Insights from Solution-Phase Surface-Enhanced Raman Spectroscopy.
J Phys Chem B. 2021 Mar 4;125(8):2031-2041. doi: 10.1021/acs.jpcb.0c10576. Epub 2021 Feb 22.
3
Raman scattering in protonated and deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC): Indicators of conformational and lateral orders.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Feb 15;267(Pt 2):120583. doi: 10.1016/j.saa.2021.120583. Epub 2021 Nov 6.
4
Structural Analysis by Enhanced Raman Scattering.
Nano Lett. 2017 Apr 12;17(4):2172-2177. doi: 10.1021/acs.nanolett.6b04509. Epub 2017 Mar 17.
6
Conformations of 2-thiouracil in the aqueous solution and its adsorption behavior on the gold substrates explored by DFT calculations and experimental methods.
Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jan 5;134:399-405. doi: 10.1016/j.saa.2014.06.119. Epub 2014 Jun 30.
8
Infrared and Raman spectra, conformational stability, vibrational assignment and ab initio calculations of methylvinyl silyl chloride.
Spectrochim Acta A Mol Biomol Spectrosc. 2003 Sep;59(11):2449-71. doi: 10.1016/s1386-1425(02)00379-7.
9
Vibration and DFT analysis of 2-methyl-3-nitrophenyl isocyanate and 4-methyl-2-nitrophenyl isocyanate.
Spectrochim Acta A Mol Biomol Spectrosc. 2012 Sep;95:120-7. doi: 10.1016/j.saa.2012.04.032. Epub 2012 Apr 26.
10
HF, MP2 and DFT calculations and spectroscopic study of the vibrational and conformational properties of N-diethylendiamine.
Spectrochim Acta A Mol Biomol Spectrosc. 2007 Nov;68(3):942-7. doi: 10.1016/j.saa.2007.01.007. Epub 2007 Jan 19.

引用本文的文献

1
A Raman spectral marker for the iso-octyl chain structure of cholesterol.
Anal Sci Adv. 2023 Dec 4;5(1-2):2300057. doi: 10.1002/ansa.202300057. eCollection 2024 Feb.

本文引用的文献

1
Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments.
Chem Sci. 2020 Apr 14;11(18):4563-4577. doi: 10.1039/d0sc00809e.
2
The Raman Spectrum of a Single Molecule on an Electrochemically Etched Silver Tip.
Appl Spectrosc. 2020 Nov;74(11):1414-1422. doi: 10.1177/0003702820949274. Epub 2020 Sep 18.
3
Simplified Ab Initio Molecular Dynamics-Based Raman Spectral Simulations.
Appl Spectrosc. 2020 Nov;74(11):1350-1357. doi: 10.1177/0003702820923392. Epub 2020 May 18.
4
The orientation of a membrane probe from structural analysis by enhanced Raman scattering.
Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183109. doi: 10.1016/j.bbamem.2019.183109. Epub 2019 Nov 28.
5
Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice.
Angew Chem Int Ed Engl. 2020 Mar 27;59(14):5454-5462. doi: 10.1002/anie.201908154. Epub 2020 Feb 20.
6
Surface-Enhanced Raman Spectroscopy of Fluid-Supported Lipid Bilayers.
ACS Appl Mater Interfaces. 2019 Sep 11;11(36):33442-33451. doi: 10.1021/acsami.9b09988. Epub 2019 Aug 29.
7
Resolving Molecular Structures with High-Resolution Tip-Enhanced Raman Scattering Images.
ACS Nano. 2019 Aug 27;13(8):9342-9351. doi: 10.1021/acsnano.9b03980. Epub 2019 Jul 22.
8
Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance.
Chem Rev. 2019 May 8;119(9):5607-5774. doi: 10.1021/acs.chemrev.8b00538. Epub 2019 Mar 12.
10
Computational Modeling of Realistic Cell Membranes.
Chem Rev. 2019 May 8;119(9):6184-6226. doi: 10.1021/acs.chemrev.8b00460. Epub 2019 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验