Suppr超能文献

利用深度学习方法鉴定 RNA 假尿嘧啶位点。

Identification of RNA pseudouridine sites using deep learning approaches.

机构信息

Department of Computer Science & Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.

School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Japan.

出版信息

PLoS One. 2021 Feb 23;16(2):e0247511. doi: 10.1371/journal.pone.0247511. eCollection 2021.

Abstract

Pseudouridine(Ψ) is widely popular among various RNA modifications which have been confirmed to occur in rRNA, mRNA, tRNA, and nuclear/nucleolar RNA. Hence, identifying them has vital significance in academic research, drug development and gene therapies. Several laboratory techniques for Ψ identification have been introduced over the years. Although these techniques produce satisfactory results, they are costly, time-consuming and requires skilled experience. As the lengths of RNA sequences are getting longer day by day, an efficient method for identifying pseudouridine sites using computational approaches is very important. In this paper, we proposed a multi-channel convolution neural network using binary encoding. We employed k-fold cross-validation and grid search to tune the hyperparameters. We evaluated its performance in the independent datasets and found promising results. The results proved that our method can be used to identify pseudouridine sites for associated purposes. We have also implemented an easily accessible web server at http://103.99.176.239/ipseumulticnn/.

摘要

假尿嘧啶核苷(Ψ)是各种 RNA 修饰中广泛存在的一种,已被证实存在于 rRNA、mRNA、tRNA 和核/核仁 RNA 中。因此,鉴定它们在学术研究、药物开发和基因治疗中具有重要意义。多年来已经介绍了几种用于 Ψ 鉴定的实验室技术。尽管这些技术产生了令人满意的结果,但它们成本高、耗时且需要熟练的经验。随着 RNA 序列长度的日益增加,使用计算方法有效识别假尿嘧啶核苷位点的方法非常重要。在本文中,我们提出了一种使用二进制编码的多通道卷积神经网络。我们采用 k 折交叉验证和网格搜索来调整超参数。我们在独立数据集上评估了它的性能,结果令人鼓舞。结果证明,我们的方法可用于鉴定与相关目的的假尿嘧啶核苷位点。我们还在 http://103.99.176.239/ipseumulticnn/ 上实现了一个易于访问的网络服务器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a46/7901771/ff6d711f3a3d/pone.0247511.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验