Chen Zhaowei, Tsytsarev Vassiliy, Finfrock Y Zou, Antipova Olga A, Cai Zhonghou, Arakawa Hiroyuki, Lischka Fritz W, Hooks Bryan M, Wilton Rosemarie, Wang Dongyi, Liu Yi, Gaitan Brandon, Tao Yang, Chen Yu, Erzurumlu Reha S, Yang Huanghao, Rozhkova Elena A
Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States.
Institute of Food Safety and Environment Monitoring, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
ACS Nano. 2021 Mar 23;15(3):5201-5208. doi: 10.1021/acsnano.0c10436. Epub 2021 Feb 24.
While offering high-precision control of neural circuits, optogenetics is hampered by the necessity to implant fiber-optic waveguides in order to deliver photons to genetically engineered light-gated neurons in the brain. Unlike laser light, X-rays freely pass biological barriers. Here we show that radioluminescent Gd(WO):Eu nanoparticles, which absorb external X-rays energy and then downconvert it into optical photons with wavelengths of ∼610 nm, can be used for the transcranial stimulation of cortical neurons expressing red-shifted, ∼590-630 nm, channelrhodopsin ReaChR, thereby promoting optogenetic neural control to the practical implementation of minimally invasive wireless deep brain stimulation.
虽然光遗传学能够对神经回路进行高精度控制,但由于需要植入光纤波导以便将光子传递到大脑中经过基因工程改造的光门控神经元,这限制了其应用。与激光不同,X射线能够自由穿透生物屏障。在此,我们展示了放射性发光的Gd(WO)∶Eu纳米颗粒,其吸收外部X射线能量后,再将其下转换为波长约为610 nm的光学光子,可用于对表达红移的、波长约为590 - 630 nm的通道视紫红质ReaChR的皮质神经元进行经颅刺激,从而推动光遗传学神经控制向微创无线深部脑刺激的实际应用迈进。