Suppr超能文献

联合无监督-监督机器学习方法对复杂疾病进行表型分析及其在阻塞性睡眠呼吸暂停中的应用。

Combined unsupervised-supervised machine learning for phenotyping complex diseases with its application to obstructive sleep apnea.

机构信息

Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.

出版信息

Sci Rep. 2021 Feb 24;11(1):4457. doi: 10.1038/s41598-021-84003-4.

Abstract

Unsupervised clustering models have been widely used for multimetric phenotyping of complex and heterogeneous diseases such as diabetes and obstructive sleep apnea (OSA) to more precisely characterize the disease beyond simplistic conventional diagnosis standards. However, the number of clusters and key phenotypic features have been subjectively selected, reducing the reliability of the phenotyping results. Here, to minimize such subjective decisions for highly confident phenotyping, we develop a multimetric phenotyping framework by combining supervised and unsupervised machine learning. This clusters 2277 OSA patients to six phenotypes based on their multidimensional polysomnography (PSG) data. Importantly, these new phenotypes show statistically different comorbidity development for OSA-related cardio-neuro-metabolic diseases, unlike the conventional single-metric apnea-hypopnea index-based phenotypes. Furthermore, the key features of highly comorbid phenotypes were identified through supervised learning rather than subjective choice. These results can also be used to automatically phenotype new patients and predict their comorbidity risks solely based on their PSG data. The phenotyping framework based on the combination of unsupervised and supervised machine learning methods can also be applied to other complex, heterogeneous diseases for phenotyping patients and identifying important features for high-risk phenotypes.

摘要

无监督聚类模型已被广泛应用于糖尿病和阻塞性睡眠呼吸暂停(OSA)等复杂和异质疾病的多指标表型分析,以超越简单的传统诊断标准更精确地描述疾病。然而,聚类的数量和关键表型特征是主观选择的,降低了表型结果的可靠性。在这里,为了最小化这种高度可信表型分析的主观决策,我们结合有监督和无监督机器学习开发了一种多指标表型分析框架。该框架根据 2277 名 OSA 患者的多维多导睡眠图(PSG)数据将其聚类为六种表型。重要的是,与传统的基于单一指标呼吸暂停低通气指数的表型不同,这些新表型显示出 OSA 相关的心脑代谢疾病在发病方面存在统计学上的显著差异。此外,通过有监督学习而不是主观选择确定了高度共患病表型的关键特征。这些结果还可以用于仅根据 PSG 数据自动对新患者进行表型分析并预测其共患病风险。基于无监督和有监督机器学习方法组合的表型分析框架也可以应用于其他复杂的异质疾病,用于对患者进行表型分析和确定高危表型的重要特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fafb/7904925/7eb74678bb15/41598_2021_84003_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验