Suppr超能文献

西班牙马德里2019冠状病毒病的第一波和第二波疫情:与危重症/致命疾病相关的临床特征和血液学危险因素

First and Second Waves of Coronavirus Disease 2019 in Madrid, Spain: Clinical Characteristics and Hematological Risk Factors Associated With Critical/Fatal Illness.

作者信息

Mollinedo-Gajate Irene, Villar-Álvarez Felipe, Zambrano-Chacón María de Los Ángeles, Núñez-García Laura, de la Dueña-Muñoz Laura, López-Chang Carlos, Górgolas Miguel, Cabello Alfonso, Sánchez-Pernaute Olga, Romero-Bueno Fredeswinda, Aceña Álvaro, González-Mangado Nicolás, Peces-Barba Germán, Mollinedo Faustino

机构信息

Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.

Department of Brain Sciences, Imperial College London, London, United Kingdom.

出版信息

Crit Care Explor. 2021 Feb 22;3(2):e0346. doi: 10.1097/CCE.0000000000000346. eCollection 2021 Feb.

Abstract

OBJECTIVES

This study aims to determine similarities and differences in clinical characteristics between the patients from two waves of severe acute respiratory syndrome coronavirus-2 infection at the time of hospital admission, as well as to identify risk biomarkers of coronavirus disease 2019 severity.

DESIGN

Retrospective observational study.

SETTING

A single tertiary-care center in Madrid.

PATIENTS

Coronavirus disease 2019 adult patients admitted to hospital from March 4, 2020, to March 25, 2020 (first infection wave), and during July 18, 2020, and August 20, 2020 (second infection wave).

INTERVENTIONS

Treatment with a hospital-approved drug cocktail during hospitalization.

MEASUREMENTS AND MAIN RESULTS

Demographic, clinical, and laboratory data were compared between the patients with moderate and critical/fatal illness across both infection waves. The median age of patients with critical/fatal coronavirus disease 2019 was 67.5 years (interquartile range, 56.75-78.25 yr; 64.5% male) in the first wave and 59.0 years (interquartile range, 48.25-80.50 yr; 70.8% male) in the second wave. Hypertension and dyslipidemia were major comorbidities in both waves. Body mass index over 25 and presence of bilateral pneumonia were common findings. Univariate logistic regression analyses revealed an association of a number of blood parameters with the subsequent illness progression and severity in both waves. However, some remarkable differences were detected between both waves that prevented an accurate extrapolation of prediction models from the first wave into the second wave. Interleukin-6 and d-dimer concentrations at the time of hospital admission were remarkably higher in patients who developed a critical/fatal condition only during the first wave ( < 0.001), although both parameters significantly increased with disease worsening in follow-up studies from both waves. Multivariate analyses from wave 1 rendered a predictive signature for critical/fatal illness upon hospital admission that comprised six blood biomarkers: neutrophil-to-lymphocyte ratio (≥ 5; odds ratio, 2.684 [95% CI, 1.143-6.308]), C-reactive protein (≥ 15.2 mg/dL; odds ratio, 2.412 [95% CI, 1.006-5.786]), lactate dehydrogenase (≥ 411.96 U/L; odds ratio, 2.875 [95% CI, 1.229-6.726]), interleukin-6 (≥ 78.8 pg/mL; odds ratio, 5.737 [95% CI, 2.432-13.535]), urea (≥ 40 mg/dL; odds ratio, 1.701 [95% CI, 0.737-3.928]), and d-dimer (≥ 713 ng/mL; odds ratio, 1.903 [95% CI, 0.832-4.356]). The predictive accuracy of the signature was 84% and the area under the receiver operating characteristic curve was 0.886. When the signature was validated with data from wave 2, the accuracy was 81% and the area under the receiver operating characteristic curve value was 0.874, albeit most biomarkers lost their independent significance. Follow-up studies reassured the importance of monitoring the biomarkers included in the signature, since dramatic increases in the levels of such biomarkers occurred in critical/fatal patients over disease progression.

CONCLUSIONS

Most parameters analyzed behaved similarly in the two waves of coronavirus disease 2019. However, univariate logistic regression conducted in both waves revealed differences in some parameters associated with poor prognosis in wave 1 that were not found in wave 2, which may reflect a different disease stage of patients on arrival to hospital. The six-biomarker predictive signature reported here constitutes a helpful tool to classify patient's prognosis on arrival to hospital.

摘要

目的

本研究旨在确定两波严重急性呼吸综合征冠状病毒2感染患者入院时临床特征的异同,并识别2019冠状病毒病严重程度的风险生物标志物。

设计

回顾性观察研究。

地点

马德里的一家三级医疗中心。

患者

2020年3月4日至2020年3月25日(第一波感染)以及2020年7月18日至2020年8月20日期间入院的2019冠状病毒病成年患者。

干预措施

住院期间使用医院批准的药物组合进行治疗。

测量和主要结果

比较了两波感染中中度和重症/致死性疾病患者的人口统计学、临床和实验室数据。第一波中,重症/致死性2019冠状病毒病患者的中位年龄为67.5岁(四分位间距,56.75 - 78.25岁;男性占64.5%),第二波中为59.0岁(四分位间距,48.25 - 80.50岁;男性占70.8%)。高血压和血脂异常在两波中都是主要的合并症。体重指数超过25以及双侧肺炎的存在是常见表现。单因素逻辑回归分析显示,两波中一些血液参数与随后的疾病进展和严重程度相关。然而,两波之间检测到一些显著差异,这使得无法将第一波的预测模型准确外推到第二波。仅在第一波中发展为重症/致死性疾病状态的患者入院时白细胞介素 - 6和D - 二聚体浓度显著更高(<0.001),尽管在两波的后续研究中这两个参数都随着疾病恶化而显著增加。第一波的多因素分析得出了入院时重症/致死性疾病的预测特征,包括六个血液生物标志物:中性粒细胞与淋巴细胞比值(≥5;比值比,2.684 [95%CI,1.143 - 6.308])、C反应蛋白(≥15.2mg/dL;比值比,2.412 [95%CI,1.006 - 5.786])、乳酸脱氢酶(≥411.96U/L;比值比,2.875 [95%CI,1.229 - 6.726])、白细胞介素 - 6(≥78.8pg/mL;比值比,5.737 [95%CI,2.432 - 13.535])尿素(≥40mg/dL;比值比,1.701 [95%CI,0.737 - 3.928])和D - 二聚体(≥713ng/mL;比值比,1.903 [95%CI,0.832 - 4.356])。该特征的预测准确性为84%,受试者工作特征曲线下面积为0.886。当用第二波数据验证该特征时,准确性为81%,受试者工作特征曲线下面积值为0.874,尽管大多数生物标志物失去了其独立意义。随访研究再次证实了监测该特征中所含生物标志物的重要性,因为在重症/致死性患者疾病进展过程中这些生物标志物水平显著升高。

结论

在两波2019冠状病毒病中,大多数分析参数表现相似。然而,两波进行的单因素逻辑回归显示,第一波中一些与不良预后相关的参数在第二波中未发现差异,这可能反映了患者入院时不同的疾病阶段。这里报告的六个生物标志物预测特征构成了一个有助于在入院时对患者预后进行分类的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6599/7901790/60b1342b4f88/cc9-3-e0346-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验