Suppr超能文献

可解释、校准的神经网络,用于分析和理解非弹性中子散射数据。

Interpretable, calibrated neural networks for analysis and understanding of inelastic neutron scattering data.

机构信息

SciML, Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, United Kingdom.

Department of Materials Science and Engineering, University of Oxford, 21 Banbury Rd, Oxford OX2 6HT, United Kingdom.

出版信息

J Phys Condens Matter. 2021 Apr 27;33(19). doi: 10.1088/1361-648X/abea1c.

Abstract

Deep neural networks (NNs) provide flexible frameworks for learning data representations and functions relating data to other properties and are often claimed to achieve 'super-human' performance in inferring relationships between input data and desired property. In the context of inelastic neutron scattering experiments, however, as in many other scientific scenarios, a number of issues arise: (i) scarcity of labelled experimental data, (ii) lack of uncertainty quantification on results, and (iii) lack of interpretability of the deep NNs. In this work we examine approaches to all three issues. We use simulated data to train a deep NN to distinguish between two possible magnetic exchange models of a half-doped manganite. We apply the recently developed deterministic uncertainty quantification method to provide error estimates for the classification, demonstrating in the process how important realistic representations of instrument resolution in the training data are for reliable estimates on experimental data. Finally we use class activation maps to determine which regions of the spectra are most important for the final classification result reached by the network.

摘要

深度神经网络 (NN) 为学习数据表示和将数据与其他属性相关联的函数提供了灵活的框架,并且通常被声称在推断输入数据与所需属性之间的关系方面能够达到“超人”的性能。然而,在非弹性中子散射实验的背景下,与许多其他科学场景一样,出现了一些问题:(i) 标记实验数据的稀缺,(ii) 结果缺乏不确定性量化,以及 (iii) 深度神经网络的可解释性缺失。在这项工作中,我们研究了所有三个问题的方法。我们使用模拟数据训练深度神经网络来区分半掺杂锰氧化物的两种可能的磁交换模型。我们应用最近开发的确定性不确定性量化方法为分类提供误差估计,在此过程中展示了在训练数据中对仪器分辨率进行现实表示对于对实验数据进行可靠估计的重要性。最后,我们使用类激活图来确定光谱中哪些区域对网络最终达到的分类结果最重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验