Suppr超能文献

用于评估数字健康应用程序的“替代研究设计”——真的是一种替代方案吗?

["Alternative study designs" for the evaluation of digital health applications - a real alternative?].

作者信息

Gensorowsky Daniel, Lampe David, Hasemann Lena, Düvel Juliane, Greiner Wolfgang

机构信息

Universität Bielefeld, Fakultät für Gesundheitswissenschaften, Gesundheitsökonomie und Gesundheitsmanagement, Bielefeld, Deutschland.

Universität Bielefeld, Fakultät für Gesundheitswissenschaften, Gesundheitsökonomie und Gesundheitsmanagement, Bielefeld, Deutschland.

出版信息

Z Evid Fortbild Qual Gesundhwes. 2021 Apr;161:33-41. doi: 10.1016/j.zefq.2021.01.006. Epub 2021 Feb 26.

Abstract

INTRODUCTION

After the Digital Healthcare Act (Digitale-Versorgung-Gesetz, DVG) reformed digital health applications' (Digitale Gesundheitsanwendungen, DiGAs) access to German Statutory Health Insurance (SHI) reimbursement, the discussion concerning necessary evidence requirements has intensified. In the past, different "alternative study designs" have been proposed to replace randomized controlled trials (RCTs) in the DiGA efficacy and benefit assessments. The present paper examines the suitability of these alternative designs for informing SHI reimbursement decisions.

METHODS

The four alternative study designs primarily discussed in the context of DiGA - "Continuous Evaluation of Evolving Behavioral Intervention Technologies" (CEEBIT), "Multiphase Optimization Strategy" (MOST), "Sequential Multiple Assignment Randomized Trial" (SMART) and "Micro-Randomized Trial" (MRT) - are characterized and compared on the basis of relevant primary and secondary sources. Subsequently, their suitability for effectiveness and benefit evaluation in the context of SHI reimbursement decisions is discussed.

RESULTS

None of the study designs examined aims primarily at conclusively demonstrating efficacy and benefit. Three of the four designs (MOST, SMART, MRT) focus on the development and optimization of interventions. In order to reduce resource requirements, the approaches presented sometimes deviate considerably from the methodological approach in traditional RCTs. This is especially true for their applied statistical error tolerance and their underlying randomization logic. Three of the four concepts (MOST, SMART, MRT) therefore still require RCTs after the development phase in order to demonstrate the effectiveness and benefit of the optimized intervention.

DISCUSSION

The methodological differences of the alternative study designs compared to classical RCTs are accompanied by serious potentials for bias and uncertainties with regard to the identified intervention effects. These may be acceptable in the context of intervention development, but do not appear to be appropriate for use in collective SHI reimbursement decisions.

CONCLUSION

The alternative study designs presented cannot be regarded as a suitable RCT alternative for efficacy and benefit assessments. A pragmatic study design, which continues to meet high methodological standards, and better utilization of real-world data could, in the future, contribute to a compromise between the justified claims to sufficient certainty of results on the one hand and appropriate procedural effort on the other.

摘要

引言

《数字医疗法案》(Digitale-Versorgung-Gesetz,DVG)改革了数字健康应用程序(Digitale Gesundheitsanwendungen,DiGAs)获得德国法定医疗保险(SHI)报销的途径后,关于必要证据要求的讨论愈演愈烈。过去,人们提出了不同的“替代研究设计”,以取代在DiGA疗效和效益评估中的随机对照试验(RCT)。本文探讨了这些替代设计对SHI报销决策提供信息的适用性。

方法

在DiGA背景下主要讨论的四种替代研究设计——“不断发展的行为干预技术的持续评估”(CEEBIT)、“多阶段优化策略”(MOST)、“序贯多重分配随机试验”(SMART)和“微随机试验”(MRT)——在相关的主要和次要来源的基础上进行了特征描述和比较。随后,讨论了它们在SHI报销决策背景下对有效性和效益评估的适用性。

结果

所研究的研究设计均非主要旨在确凿地证明疗效和效益。四种设计中的三种(MOST、SMART、MRT)侧重于干预措施的开发和优化。为了减少资源需求,所提出的方法有时与传统RCT中的方法学方法有很大偏差。这在其应用的统计误差容忍度及其潜在的随机化逻辑方面尤其如此。因此,四个概念中的三个(MOST、SMART、MRT)在开发阶段之后仍需要RCT,以证明优化干预措施的有效性和效益。

讨论

与经典RCT相比,替代研究设计的方法学差异伴随着在已确定的干预效果方面存在严重的偏差可能性和不确定性。这些在干预措施开发的背景下可能是可以接受的,但似乎不适用于集体SHI报销决策。

结论

所提出的替代研究设计不能被视为疗效和效益评估的合适RCT替代方案。一种务实的研究设计,继续符合高方法学标准,以及更好地利用真实世界数据,未来可能有助于在一方面对结果有足够确定性的合理要求与另一方面适当的程序努力之间达成妥协。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验