Suppr超能文献

造血细胞移植患者纵向微生物组数据和医院组学的汇编。

Compilation of longitudinal microbiota data and hospitalome from hematopoietic cell transplantation patients.

机构信息

Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.

出版信息

Sci Data. 2021 Mar 2;8(1):71. doi: 10.1038/s41597-021-00860-8.

Abstract

The impact of the gut microbiota in human health is affected by several factors including its composition, drug administrations, therapeutic interventions and underlying diseases. Unfortunately, many human microbiota datasets available publicly were collected to study the impact of single variables, and typically consist of outpatients in cross-sectional studies, have small sample numbers and/or lack metadata to account for confounders. These limitations can complicate reusing the data for questions outside their original focus. Here, we provide comprehensive longitudinal patient dataset that overcomes those limitations: a collection of fecal microbiota compositions (>10,000 microbiota samples from >1,000 patients) and a rich description of the "hospitalome" experienced by the hosts, i.e., their drug exposures and other metadata from patients with cancer, hospitalized to receive allogeneic hematopoietic cell transplantation (allo-HCT) at a large cancer center in the United States. We present five examples of how to apply these data to address clinical and scientific questions on host-associated microbial communities.

摘要

肠道微生物群对人类健康的影响受到多种因素的影响,包括其组成、药物管理、治疗干预和潜在疾病。不幸的是,许多公开提供的人类微生物组数据集是为了研究单一变量的影响而收集的,通常由横断面研究中的门诊患者组成,样本数量较少,/或缺乏元数据来解释混杂因素。这些限制可能会使数据难以重新用于其原始重点以外的问题。在这里,我们提供了一个全面的纵向患者数据集,克服了这些限制:粪便微生物群组成的集合(来自 1000 多名患者的超过 10000 个微生物样本)和宿主所经历的“医院微生物组”的丰富描述,即他们的药物暴露和来自癌症患者的其他元数据,这些患者住院接受异体造血细胞移植(allo-HCT)在美国的一个大型癌症中心。我们提出了五个应用这些数据来解决与宿主相关微生物群落相关的临床和科学问题的示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2383/7925583/ec6a4ac54ed0/41597_2021_860_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验