Institute of Psychology, University of Tartu, Näituse 2, 50409, Tartu, Estonia.
Estonian Academy of Sciences, Tallinn, Estonia.
Atten Percept Psychophys. 2021 Apr;83(3):1282-1289. doi: 10.3758/s13414-020-02234-5. Epub 2021 Mar 2.
In ensemble displays, two principal factors determine the precision with which the mean value of some perceptual attribute, such as size and orientation, can be discriminated: inefficiency and representational noise of each element. Inefficiency is mainly caused by biased inference, or by inattentional (feature) blindness (i.e., some elements or their features are not processed). Here, we define inattentional feature blindness as an inability to perceive the value(s) of certain feature(s) of an object while the presence of the object itself may be registered. Separation of the effects of inattentional (feature) blindness and perceptual noise has escaped traditional analytic methods because of their trade-off effects on the slope of the psychometric discrimination function. Here, we propose a method that can separate the effects of inattentional feature blindness from that of the representational noise. The basic idea is to display a set of elements from which only one contains information relevant for solving the task, while all other elements are "dummies" carrying no useful information because they do not differ from the reference. If the single informative element goes unprocessed, the correct answer can only be given by a random guess. The guess rate can be modeled similarly to the lapse rate, traditionally represented by λ. As an illustration, we present evidence that the presence versus lack of inattentional feature blindness in orientation pooling depends on the feature types present in the display.
在集成显示中,有两个主要因素决定了某个感知属性(如大小和方向)的平均值能够被精确区分:每个元素的效率低下和表示噪声。效率低下主要是由于有偏差的推断或由于注意力不集中(特征)失明(即某些元素或其特征未被处理)造成的。在这里,我们将注意力不集中的特征失明定义为在对象本身存在的情况下无法感知对象的某些特征的值。由于它们在心理物理辨别函数斜率上的权衡效应,注意力不集中(特征)失明和感知噪声的影响的分离逃脱了传统的分析方法。在这里,我们提出了一种可以将注意力不集中的特征失明的影响与表示噪声的影响分开的方法。基本思想是显示一组元素,其中只有一个包含解决任务所需的信息,而所有其他元素都是“哑元”,因为它们与参考元素没有区别,所以不包含有用信息。如果单个信息元素未被处理,则只能通过随机猜测给出正确答案。猜测率可以类似于传统上用 λ 表示的失误率进行建模。作为说明,我们提供了证据表明,在方向汇聚中注意力不集中的特征失明的存在与否取决于显示中存在的特征类型。