Pranav Manasi, Benduhn Johannes, Nyman Mathias, Hosseini Seyed Mehrdad, Kublitski Jonas, Shoaee Safa, Neher Dieter, Leo Karl, Spoltore Donato
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Straße 61, 01187 Dresden, Germany.
Faculty of Science and Engineering, Åbo Akademi University, Porthansgatan 3, 20500 Turku, Finland.
ACS Appl Mater Interfaces. 2021 Mar 17;13(10):12603-12609. doi: 10.1021/acsami.1c00049. Epub 2021 Mar 4.
Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C interlayer on MoO, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design.
界面层与合适的电荷传输层相结合,可以通过促进高效的电荷载流子注入和提取,显著提高光电器件的性能。这项工作在阳极上使用了纯碳中间层,通过实验揭示了表面复合是有机太阳能电池中非辐射复合损失的一个重要因素。通过计算低施主含量和高施主含量的体异质结器件结构中的电压损失,证明这些损失与光活性层中的施主分子和氧化钼(MoO)空穴提取层之间的接触程度成正比增加。利用一种新颖的器件内内置电压测定方法,由于在MoO上插入了薄的阳极碳中间层而导致的表面复合抑制,归因于增强的内置电势。增加的内置电压减少了电极处少数载流子的存在——这是关于选择性电荷提取层原理的一个新视角。器件效率的提高受到临界中间层厚度的限制,该厚度取决于双层器件中的施主材料。鉴于MoO作为一种高效的空穴提取和注入层非常受欢迎,以及关于有机光电器件中界面现象的讨论越来越多,这些发现与有机电子学的不同分支相关并有所涉及,为未来的器件设计提供了见解。