Suppr超能文献

机器人学习:深度强化学习、模仿学习、迁移学习。

Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning.

机构信息

Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China.

School of Computing, University of Portsmouth, Portsmouth 03801, UK.

出版信息

Sensors (Basel). 2021 Feb 11;21(4):1278. doi: 10.3390/s21041278.

Abstract

Dexterous manipulation of the robot is an important part of realizing intelligence, but manipulators can only perform simple tasks such as sorting and packing in a structured environment. In view of the existing problem, this paper presents a state-of-the-art survey on an intelligent robot with the capability of autonomous deciding and learning. The paper first reviews the main achievements and research of the robot, which were mainly based on the breakthrough of automatic control and hardware in mechanics. With the evolution of artificial intelligence, many pieces of research have made further progresses in adaptive and robust control. The survey reveals that the latest research in deep learning and reinforcement learning has paved the way for highly complex tasks to be performed by robots. Furthermore, deep reinforcement learning, imitation learning, and transfer learning in robot control are discussed in detail. Finally, major achievements based on these methods are summarized and analyzed thoroughly, and future research challenges are proposed.

摘要

机器人的灵巧操作是实现智能的重要组成部分,但机械手只能在结构化环境中执行诸如分拣和包装之类的简单任务。针对现有问题,本文对具有自主决策和学习能力的智能机器人进行了最新研究综述。本文首先回顾了机器人的主要成果和研究,这些成果主要基于自动控制和力学硬件方面的突破。随着人工智能的发展,自适应和鲁棒控制方面的许多研究取得了进一步的进展。研究表明,深度学习和强化学习的最新研究为机器人执行高度复杂的任务铺平了道路。此外,还详细讨论了机器人控制中的深度强化学习、模仿学习和迁移学习。最后,对基于这些方法的主要成果进行了总结和深入分析,并提出了未来的研究挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b48/7916895/681087609408/sensors-21-01278-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验