Suppr超能文献

通过使用准确的 AIBL(QM)衍生值增强稀疏实验数据集来提高碳酸的 pK 值预测。

Enhancing Carbon Acid pK Prediction by Augmentation of Sparse Experimental Datasets with Accurate AIBL (QM) Derived Values.

机构信息

Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, UK.

Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester M1 7DN, UK.

出版信息

Molecules. 2021 Feb 17;26(4):1048. doi: 10.3390/molecules26041048.

Abstract

The prediction of the aqueous pK of carbon acids by Quantitative Structure Property Relationship or cheminformatics-based methods is a rather arduous problem. Primarily, there are insufficient high-quality experimental data points measured in homogeneous conditions to allow for a good global model to be generated. In our computationally efficient pK prediction method, we generate an atom-type feature vector, called a distance spectrum, from the assigned ionisation atom, and learn coefficients for those atom-types that show the impact each atom-type has on the pK of the ionisable centre. In the current work, we augment our dataset with pK values from a series of high performing local models derived from the Ab Initio Bond Lengths method (AIBL). We find that, in distilling the knowledge available from multiple models into one general model, the prediction error for an external test set is reduced compared to that using literature experimental data alone.

摘要

通过定量结构性质关系或基于 cheminformatics 的方法预测水相羧酸的 pK 值是一个相当艰巨的问题。主要原因是,在同质条件下测量的高质量实验数据点不足,无法生成良好的全局模型。在我们计算效率高的 pK 值预测方法中,我们从指定的离解原子生成一个原子类型特征向量,称为距离谱,并学习那些对离解中心的 pK 值有影响的原子类型的系数。在当前的工作中,我们使用一系列来自从头算键长方法(AIBL)的高性能局部模型的 pK 值来扩充我们的数据集。我们发现,在将来自多个模型的知识提炼到一个通用模型中时,与仅使用文献实验数据相比,外部测试集的预测误差降低了。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc55/7922142/0567c9843afc/molecules-26-01048-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验