Heidari Maziar, Kremer Kurt, Golestanian Ramin, Potestio Raffaello, Cortes-Huerto Robinson
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany.
J Chem Phys. 2020 May 21;152(19):194104. doi: 10.1063/1.5143268.
We propose an open-boundary molecular dynamics method in which an atomistic system is in contact with an infinite particle reservoir at constant temperature, volume, and chemical potential. In practice, following the Hamiltonian adaptive resolution strategy, the system is partitioned into a domain of interest and a reservoir of non-interacting, ideal gas particles. An external potential, applied only in the interfacial region, balances the excess chemical potential of the system. To ensure that the size of the reservoir is infinite, we introduce a particle insertion/deletion algorithm to control the density in the ideal gas region. We show that it is possible to study non-equilibrium phenomena with this open-boundary molecular dynamics method. To this aim, we consider a prototypical confined liquid under the influence of an external constant density gradient. The resulting pressure-driven flow across the atomistic system exhibits a velocity profile consistent with the corresponding solution of the Navier-Stokes equation. This method conserves, on average, linear momentum and closely resembles experimental conditions. Moreover, it can be used to study various direct and indirect out-of-equilibrium conditions in complex molecular systems.
我们提出了一种开放边界分子动力学方法,在该方法中,一个原子系统在恒定温度、体积和化学势下与一个无限粒子库接触。在实际操作中,遵循哈密顿自适应分辨率策略,系统被划分为一个感兴趣的区域和一个由非相互作用的理想气体粒子组成的库。仅在界面区域施加的外部势平衡了系统的过量化学势。为确保库的大小是无限的,我们引入了一种粒子插入/删除算法来控制理想气体区域的密度。我们表明,用这种开放边界分子动力学方法研究非平衡现象是可能的。为此,我们考虑一个在外部恒定密度梯度影响下的典型受限液体。原子系统中由此产生的压力驱动流呈现出与纳维 - 斯托克斯方程相应解一致的速度分布。该方法平均守恒线性动量,并且与实验条件非常相似。此外,它可用于研究复杂分子系统中各种直接和间接的非平衡条件。