Suppr超能文献

用于高性能表面等离子体共振(SPR)传感器设计的改进粒子群优化算法

Improved particle swarm optimization algorithm for high performance SPR sensor design.

作者信息

Han Lei, Xu Chaoyu, Huang Tianye, Dang Xueyan

出版信息

Appl Opt. 2021 Feb 20;60(6):1753-1760. doi: 10.1364/AO.417015.

Abstract

The surface plasmon resonance (SPR) sensor offers high sensitivity, good stability, simple structure, and is label-free. However, optimizing a multi-layered structure is quite time-consuming within the SPR sensor design process. Moreover, it is easy to overlook optimal design when using the conventional parameter sweeping method. In this paper, the improved particle swarm optimization (IPSO) algorithm with high global optimal solution convergence speed is applied for this purpose. Based on the IPSO algorithm, the SPR sensor with transition metal dichalcogenides (TMDCs) and graphene composite is proposed and optimized. The results show that the best Ag-ITO--graphene hybrid structure can be found by the IPSO algorithm, and the maximum sensitivity is 137.4°/RIU, and the figure of merit (FOM) is 5.25. Compared with the standard particle swarm optimization algorithm, the number of iterations can be reduced. The development of the SPR sensor provides an optimization platform, which enormously improves the development efficiency of the multi-layer SPR sensor.

摘要

表面等离子体共振(SPR)传感器具有高灵敏度、良好的稳定性、结构简单且无需标记等优点。然而,在SPR传感器设计过程中,优化多层结构相当耗时。此外,使用传统的参数扫描方法时很容易忽略最优设计。为此,本文应用了具有高全局最优解收敛速度的改进粒子群优化(IPSO)算法。基于IPSO算法,提出并优化了具有过渡金属二卤化物(TMDCs)和石墨烯复合材料的SPR传感器。结果表明,通过IPSO算法可以找到最佳的Ag-ITO-石墨烯混合结构,其最大灵敏度为137.4°/RIU,品质因数(FOM)为5.25。与标准粒子群优化算法相比,可减少迭代次数。SPR传感器的开发提供了一个优化平台,极大地提高了多层SPR传感器的开发效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验