Zhang Oumeng, Lew Matthew D
J Opt Soc Am A Opt Image Sci Vis. 2021 Feb 1;38(2):277-287. doi: 10.1364/JOSAA.411981.
Precisely measuring the three-dimensional position and orientation of individual fluorophores is challenging due to the substantial photon shot noise in single-molecule experiments. Facing this limited photon budget, numerous techniques have been developed to encode 2D and 3D position and 2D and 3D orientation information into fluorescence images. In this work, we adapt classical and quantum estimation theory and propose a mathematical framework to derive the best possible precision for measuring the position and orientation of dipole-like emitters for any fixed imaging system. We find that it is impossible to design an instrument that achieves the maximum sensitivity limit for measuring all possible rotational motions. Further, our vectorial dipole imaging model shows that the best quantum-limited localization precision is 4%-8% worse than that suggested by a scalar monopole model. Overall, we conclude that no single instrument can be optimized for maximum precision across all possible 2D and 3D localization and orientation measurement tasks.
由于单分子实验中存在大量的光子散粒噪声,精确测量单个荧光团的三维位置和方向具有挑战性。面对这种有限的光子预算,人们已经开发了许多技术,将二维和三维位置以及二维和三维方向信息编码到荧光图像中。在这项工作中,我们采用经典和量子估计理论,提出了一个数学框架,以推导任何固定成像系统测量偶极子状发射器位置和方向的最佳精度。我们发现,不可能设计出一种仪器,使其在测量所有可能的旋转运动时都能达到最大灵敏度极限。此外,我们的矢量偶极子成像模型表明,最佳量子极限定位精度比标量单极子模型所建议的精度差4%-8%。总体而言,我们得出结论,没有一种仪器能够针对所有可能的二维和三维定位及方向测量任务进行优化,以实现最高精度。