Agarwal Akshay, Simonaitis John, Berggren Karl K
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, United States of America.
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, United States of America.
Ultramicroscopy. 2021 May;224:113238. doi: 10.1016/j.ultramic.2021.113238. Epub 2021 Feb 27.
Scanning electron microscopy is a powerful tool for nanoscale imaging of organic and inorganic materials. An important metric for characterizing the limits of performance of these microscopes is the Detective Quantum Efficiency (DQE), which measures the fraction of emitted secondary electrons (SEs) that are detected by the SE detector. However, common techniques for measuring DQE approximate the SE emission process to be Poisson distributed, which can lead to incorrect DQE values. In this paper, we introduce a technique for measuring DQE in which we directly count the mean number of secondary electrons detected from a sample using image histograms. This technique does not assume Poisson distribution of SEs and makes it possible to accurately measure DQE for a wider range of imaging conditions. As a demonstration of our technique, we map the variation of DQE as a function of working distance in the microscope.
扫描电子显微镜是用于对有机和无机材料进行纳米级成像的强大工具。用于表征这些显微镜性能极限的一个重要指标是探测量子效率(DQE),它衡量的是被二次电子(SE)探测器检测到的发射二次电子的比例。然而,测量 DQE 的常用技术将 SE 发射过程近似为泊松分布,这可能导致 DQE 值不正确。在本文中,我们介绍了一种测量 DQE 的技术,其中我们使用图像直方图直接计算从样品中检测到的二次电子的平均数量。该技术不假定 SE 为泊松分布,并且能够在更广泛的成像条件下准确测量 DQE。作为我们技术的一个演示,我们绘制了显微镜中 DQE 随工作距离变化的图谱。