Suppr超能文献

具有不可用状态信息的非线性系统输出跟踪的迭代学习控制

Iterative Learning Control for Output Tracking of Nonlinear Systems With Unavailable State Information.

作者信息

Li Xuefang, Shen Dong, Ding Beichen

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):5085-5092. doi: 10.1109/TNNLS.2021.3062633. Epub 2022 Aug 31.

Abstract

This work presents a novel design framework of adaptive iterative learning control (ILC) approach for a class of uncertain nonlinear systems. By using the closed-loop reference model that can be viewed as an observer, the proposed adaptive ILC approach can be adapted to deal with the output tracking problem of nonlinear systems with unavailable system states. In the systems considered, two classes of uncertainties are taken into account, including parametric input disturbances and input distribution uncertainties. To facilitate the controller design and convergence analysis, the composite energy function (CEF) methodology is employed. The design framework in this brief is novel and widely applicable, which extends the CEF-based ILC approach to output tracking control of nonlinear systems without requiring full knowledge of state information and complicated observer design process. To show the effectiveness of the proposed design framework and control algorithms, two numerical examples are illustrated.

摘要

本文提出了一种针对一类不确定非线性系统的自适应迭代学习控制(ILC)方法的新颖设计框架。通过使用可视为观测器的闭环参考模型,所提出的自适应ILC方法能够适用于处理系统状态不可用的非线性系统的输出跟踪问题。在所考虑的系统中,考虑了两类不确定性,包括参数输入干扰和输入分布不确定性。为便于控制器设计和收敛性分析,采用了复合能量函数(CEF)方法。本简报中的设计框架新颖且具有广泛适用性,它将基于CEF的ILC方法扩展到非线性系统的输出跟踪控制,而无需完全了解状态信息和复杂的观测器设计过程。为了说明所提出的设计框架和控制算法的有效性,给出了两个数值例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验