Svendsen Kristoffer, Guénot Diego, Svensson Jonas Björklund, Petersson Kristoffer, Persson Anders, Lundh Olle
Department of Physics, Lund University, P.O. Box 118, 22100, Lund, Sweden.
Deutsches Elektronen-Synchrotron DESY, NotkestraSSe 85, 22607, Hamburg, Germany.
Sci Rep. 2021 Mar 12;11(1):5844. doi: 10.1038/s41598-021-85451-8.
An electron beam of very high energy (50-250 MeV) can potentially produce a more favourable radiotherapy dose distribution compared to a state-of-the-art photon based radiotherapy technique. To produce an electron beam of sufficiently high energy to allow for a long penetration depth (several cm), very large accelerating structures are needed when using conventional radio-frequency technology, which may not be possible due to economical or spatial constraints. In this paper, we show transport and focusing of laser wakefield accelerated electron beams with a maximum energy of 160 MeV using electromagnetic quadrupole magnets in a point-to-point imaging configuration, yielding a spatial uncertainty of less than 0.1 mm, a total charge variation below [Formula: see text] and a focal spot of [Formula: see text]. The electron beam was focused to control the depth dose distribution and to improve the dose conformality inside a phantom of cast acrylic slabs and radiochromic film. The phantom was irradiated from 36 different angles to obtain a dose distribution mimicking a stereotactic radiotherapy treatment, with a peak fractional dose of 2.72 Gy and a total maximum dose of 65 Gy. This was achieved with realistic constraints, including 23 cm of propagation through air before any dose deposition in the phantom.
与基于光子的先进放射治疗技术相比,能量非常高(50 - 250 MeV)的电子束可能会产生更有利的放射治疗剂量分布。要产生能量足够高以实现长穿透深度(几厘米)的电子束,使用传统射频技术时需要非常大的加速结构,由于经济或空间限制这可能无法实现。在本文中,我们展示了在点对点成像配置中使用电磁四极磁铁对能量最高达160 MeV的激光尾场加速电子束进行传输和聚焦,得到的空间不确定性小于0.1 mm,总电荷变化低于[公式:见原文],焦斑为[公式:见原文]。聚焦电子束以控制深度剂量分布并改善由浇铸丙烯酸板和放射变色薄膜组成的体模内部的剂量适形性。从36个不同角度对体模进行照射,以获得模拟立体定向放射治疗的剂量分布,峰值分次剂量为2.72 Gy,总最大剂量为65 Gy。这是在实际限制条件下实现的,包括在体模中任何剂量沉积之前在空气中传播23 cm。