Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France.
Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France.
Neuroscience. 2021 Oct 15;474:110-121. doi: 10.1016/j.neuroscience.2021.03.005. Epub 2021 Mar 13.
Ultrasound sensitivity to slow blood flow motion gained two orders of magnitude in the last decade thanks to the advent of ultrafast ultrasound imaging at thousands of frames per second. In neuroscience, this access to small cerebral vessels flow led to the introduction of ultrasound as a new and full-fledged neuroimaging modality. Much as functional MRI or functional optical imaging, functional Ultrasound (fUS) takes benefit of the neurovascular coupling. Its ease of use, portability, spatial and temporal resolution makes it an attractive tool for functional imaging of brain activity in preclinical imaging. A large and fast-growing number of studies in a wide variety of small to large animal models have demonstrated its potential for neuroscience research. Beyond preclinical imaging, first proof of concept applications in humans are promising and proved a clear clinical interest in particular in human neonates, per-operative surgery, or even for the development of non-invasive brain machine interfaces.
得益于每秒数千帧的超快超声成像技术的出现,过去十年中,超声对缓慢血流运动的敏感度提高了两个数量级。在神经科学中,这种对小脑血管流动的探测为超声作为一种新的、成熟的神经影像学手段的引入提供了可能。就像功能磁共振成像或功能光学成像一样,功能超声(fUS)利用了神经血管耦合。它易于使用、便携、具有良好的空间和时间分辨率,使其成为在临床前成像中对大脑活动进行功能成像的有吸引力的工具。大量的研究表明,它在从小型到大型动物模型的各种模型中的应用具有巨大的潜力,并且已经在神经科学研究中得到了广泛的应用。除了临床前成像,在人类中进行的概念验证应用的初步研究也很有前景,并证实了其在人类新生儿、手术过程中,甚至在开发非侵入性脑机接口方面的明显临床应用价值。