Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, New York, USA.
Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium.
Nature. 2021 Apr;592(7852):144-149. doi: 10.1038/s41586-021-03374-w. Epub 2021 Mar 17.
The accurate segregation of chromosomes during meiosis-which is critical for genome stability across sexual cycles-relies on homologous recombination initiated by DNA double-strand breaks (DSBs) made by the Spo11 protein. The formation of DSBs is regulated and tied to the elaboration of large-scale chromosome structures, but the protein assemblies that execute and control DNA breakage are poorly understood. Here we address this through the molecular characterization of Saccharomyces cerevisiae RMM (Rec114, Mei4 and Mer2) proteins-essential, conserved components of the DSB machinery. Each subcomplex of Rec114-Mei4 (a 2:1 heterotrimer) or Mer2 (a coiled-coil-containing homotetramer) is monodispersed in solution, but they independently condense with DNA into reversible nucleoprotein clusters that share properties with phase-separated systems. Multivalent interactions drive this condensation. Mutations that weaken protein-DNA interactions strongly disrupt both condensate formation and DSBs in vivo, and thus these processes are highly correlated. In vitro, condensates fuse into mixed RMM clusters that further recruit Spo11 complexes. Our data show how the DSB machinery self-assembles on chromosome axes to create centres of DSB activity. We propose that multilayered control of Spo11 arises from the recruitment of regulatory components and modulation of the biophysical properties of the condensates.
在减数分裂过程中,染色体的精确分离对于跨性周期的基因组稳定性至关重要,这依赖于由 Spo11 蛋白引发的 DNA 双链断裂 (DSB) 引发的同源重组。DSB 的形成受到调控,并与大规模染色体结构的形成相关联,但执行和控制 DNA 断裂的蛋白质组装体仍知之甚少。在这里,我们通过对酿酒酵母 RMM(Rec114、Mei4 和 Mer2)蛋白的分子特征进行研究来解决这个问题,这些蛋白是 DSB 机制的必需、保守组成部分。Rec114-Me i4(2:1 异源三聚体)或 Mer2(富含卷曲螺旋的四聚体)的每个亚基都是在溶液中单分散的,但它们可以独立地与 DNA 凝结成可逆的核蛋白聚集体,这些聚集体具有与相分离系统共享的特性。多价相互作用驱动了这种凝聚。削弱蛋白-DNA 相互作用的突变强烈破坏了体内的凝聚体形成和 DSB,因此这些过程高度相关。在体外,凝聚体融合成混合的 RMM 聚集体,进一步招募 Spo11 复合物。我们的数据表明,DSB 机制如何在染色体轴上自我组装,以创建 DSB 活性中心。我们提出,来自调节成分的募集和对凝聚体的生物物理性质的调节,导致 Spo11 的多层控制。