Department of Mathematics, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany and Department of Mathematics and Computer Science, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
Department of Mathematics, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany.
Biostatistics. 2022 Jul 18;23(3):949-966. doi: 10.1093/biostatistics/kxaa058.
Clinical trials often aim to compare two groups of patients for efficacy and/or toxicity depending on covariates such as dose. Examples include the comparison of populations from different geographic regions or age classes or, alternatively, of different treatment groups. Similarity of these groups can be claimed if the difference in average outcome is below a certain margin over the entire covariate range. In this article, we consider the problem of testing for similarity in the case that efficacy and toxicity are measured as binary outcome variables. We develop a new test for the assessment of similarity of two groups for a single binary endpoint. Our approach is based on estimating the maximal deviation between the curves describing the responses of the two groups, followed by a parametric bootstrap test. Further, using a two-dimensional Gumbel-type model we develop methodology to establish similarity for (correlated) binary efficacy-toxicity outcomes. We investigate the operating characteristics of the proposed methodology by means of a simulation study and present a case study as an illustration.
临床试验通常旨在根据协变量(如剂量)比较两组患者的疗效和/或毒性。例如,比较来自不同地理区域或年龄组的人群,或者比较不同的治疗组。如果整个协变量范围内平均结果的差异低于某个界限,则可以声称这些组相似。在本文中,我们考虑了在疗效和毒性作为二分类结局变量的情况下,测试相似性的问题。我们为单个二分类结局开发了一种新的用于评估两组相似性的检验方法。我们的方法基于估计描述两组反应的曲线之间的最大偏差,然后进行参数 bootstrap 检验。此外,我们使用二维 Gumbel 型模型开发了用于(相关)二分类疗效-毒性结局的相似性的方法。我们通过模拟研究调查了所提出的方法的工作特性,并提供了一个案例研究作为说明。