Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel.
Essays Biochem. 2021 Apr 16;65(1):51-66. doi: 10.1042/EBC20200021.
The human genome contains multiple layers of information that extend beyond the genetic sequence. In fact, identical genetics do not necessarily yield identical phenotypes as evident for the case of two different cell types in the human body. The great variation in structure and function displayed by cells with identical genetic background is attributed to additional genomic information content. This includes large-scale genetic aberrations, as well as diverse epigenetic patterns that are crucial for regulating specific cell functions. These genetic and epigenetic patterns operate in concert in order to maintain specific cellular functions in health and disease. Single-molecule optical genome mapping is a high-throughput genome analysis method that is based on imaging long chromosomal fragments stretched in nanochannel arrays. The access to long DNA molecules coupled with fluorescent tagging of various genomic information presents a unique opportunity to study genetic and epigenetic patterns in the genome at a single-molecule level over large genomic distances. Optical mapping entwines synergistically chemical, physical, and computational advancements, to uncover invaluable biological insights, inaccessible by sequencing technologies. Here we describe the method's basic principles of operation, and review the various available mechanisms to fluorescently tag genomic information. We present some of the recent biological and clinical impact enabled by optical mapping and present recent approaches for increasing the method's resolution and accuracy. Finally, we discuss how multiple layers of genomic information may be mapped simultaneously on the same DNA molecule, thus paving the way for characterizing multiple genomic observables on individual DNA molecules.
人类基因组包含多层次的信息,超出了遗传序列的范围。事实上,相同的基因不一定会产生相同的表型,就像人体中两种不同的细胞类型一样。具有相同遗传背景的细胞表现出巨大的结构和功能差异,这归因于额外的基因组信息含量。这包括大规模的遗传异常,以及多样化的表观遗传模式,这些模式对于调节特定的细胞功能至关重要。这些遗传和表观遗传模式协同作用,以维持健康和疾病状态下特定的细胞功能。单分子光学基因组图谱是一种基于在纳米通道阵列中伸展的长染色体片段成像的高通量基因组分析方法。获取长 DNA 分子并结合各种基因组信息的荧光标记,为在单个分子水平上研究大基因组距离的基因组中的遗传和表观遗传模式提供了独特的机会。光学图谱将化学、物理和计算方面的进展有机地结合在一起,揭示了测序技术无法获得的宝贵生物学见解。在这里,我们描述了该方法的基本操作原理,并回顾了各种可用的荧光标记基因组信息的机制。我们介绍了光学图谱实现的一些最近的生物学和临床影响,并提出了一些提高该方法分辨率和准确性的最新方法。最后,我们讨论了如何在同一 DNA 分子上同时对多个基因组信息层进行图谱绘制,从而为在单个 DNA 分子上对多个基因组可观察变量进行表征铺平了道路。