Suppr超能文献

线粒体二羧酸载体通过抑制白色脂肪细胞脂解来防止肝脂肪毒性。

The mitochondrial dicarboxylate carrier prevents hepatic lipotoxicity by inhibiting white adipocyte lipolysis.

机构信息

Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.

Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.

出版信息

J Hepatol. 2021 Aug;75(2):387-399. doi: 10.1016/j.jhep.2021.03.006. Epub 2021 Mar 18.

Abstract

BACKGROUND & AIMS: We have previously reported that the mitochondrial dicarboxylate carrier (mDIC [SLC25A10]) is predominantly expressed in the white adipose tissue (WAT) and subject to regulation by metabolic cues. However, the specific physiological functions of mDIC and the reasons for its abundant presence in adipocytes are poorly understood.

METHODS

To systemically investigate the impact of mDIC function in adipocytes in vivo, we generated loss- and gain-of-function mouse models, selectively eliminating or overexpressing mDIC in mature adipocytes, respectively.

RESULTS

In in vitro differentiated white adipocytes, mDIC is responsible for succinate transport from the mitochondrial matrix to the cytosol, from where succinate can act on the succinate receptor SUCNR1 and inhibit lipolysis by dampening the cAMP- phosphorylated hormone-sensitive lipase (pHSL) pathway. We eliminated mDIC expression in adipocytes in a doxycycline (dox)-inducible manner (mDIC) and demonstrated that such a deletion results in enhanced adipocyte lipolysis and promotes high-fat diet (HFD)-induced adipocyte dysfunction, liver lipotoxicity, and systemic insulin resistance. Conversely, in a mouse model with dox-inducible, adipocyte-specific overexpression of mDIC (mDIC), we observed suppression of adipocyte lipolysis both in vivo and ex vivo. mDIC mice are potently protected from liver lipotoxicity upon HFD feeding. Furthermore, they show resistance to HFD-induced weight gain and adipose tissue expansion with concomitant improvements in glucose tolerance and insulin sensitivity. Beyond our data in rodents, we found that human WAT SLC25A10 mRNA levels are positively correlated with insulin sensitivity and negatively correlated with intrahepatic triglyceride levels, suggesting a critical role of mDIC in regulating overall metabolic homeostasis in humans as well.

CONCLUSIONS

In summary, we highlight that mDIC plays an essential role in governing adipocyte lipolysis and preventing liver lipotoxicity in response to a HFD.

LAY SUMMARY

Dysfunctional fat tissue plays an important role in the development of fatty liver disease and liver injury. Our present study identifies a mitochondrial transporter, mDIC, which tightly controls the release of free fatty acids from adipocytes to the liver through the export of succinate from mitochondria. We believe this mDIC-succinate axis could be targeted for the treatment of fatty liver disease.

摘要

背景与目的

我们之前的研究报告显示,线粒体二羧酸载体(mDIC [SLC25A10])主要在白色脂肪组织(WAT)中表达,并受到代谢信号的调节。然而,mDIC 的具体生理功能以及其在脂肪细胞中丰富存在的原因尚不清楚。

方法

为了系统地研究 mDIC 在脂肪细胞中的功能,我们构建了失活和过表达 mDIC 的小鼠模型,分别选择性地消除或过表达成熟脂肪细胞中的 mDIC。

结果

在体外分化的白色脂肪细胞中,mDIC 负责将琥珀酸从线粒体基质转运到细胞质,从细胞质中琥珀酸可以作用于琥珀酸受体 SUCNR1,并通过抑制 cAMP 磷酸化的激素敏感脂肪酶(pHSL)途径来抑制脂肪分解。我们以诱导型方式(mDIC)在脂肪细胞中消除 mDIC 的表达,并证明这种消除会导致脂肪细胞脂肪分解增强,并促进高脂肪饮食(HFD)诱导的脂肪细胞功能障碍、肝脂肪毒性和全身胰岛素抵抗。相反,在一种可诱导的、脂肪细胞特异性过表达 mDIC 的小鼠模型(mDIC)中,我们观察到体内和体外脂肪分解均受到抑制。mDIC 小鼠在高脂肪饮食喂养时能强烈地抵抗肝脂肪毒性。此外,它们还表现出对 HFD 诱导的体重增加和脂肪组织扩张的抵抗,同时改善葡萄糖耐量和胰岛素敏感性。除了我们在啮齿动物中的数据外,我们还发现人类 WAT SLC25A10 mRNA 水平与胰岛素敏感性呈正相关,与肝内甘油三酯水平呈负相关,这表明 mDIC 在调节人类整体代谢稳态方面也起着关键作用。

结论

总之,我们强调 mDIC 在调节脂肪细胞脂肪分解和防止高脂肪饮食引起的肝脂肪毒性方面起着重要作用。

平铺直叙

功能失调的脂肪组织在脂肪肝和肝损伤的发展中起着重要作用。我们的研究确定了一种线粒体转运蛋白 mDIC,它通过从线粒体输出琥珀酸来控制脂肪细胞向肝脏释放游离脂肪酸。我们认为,这个 mDIC-琥珀酸轴可能是治疗脂肪肝疾病的靶点。

相似文献

1
The mitochondrial dicarboxylate carrier prevents hepatic lipotoxicity by inhibiting white adipocyte lipolysis.
J Hepatol. 2021 Aug;75(2):387-399. doi: 10.1016/j.jhep.2021.03.006. Epub 2021 Mar 18.
3
Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance.
Mol Metab. 2016 Sep 28;5(12):1149-1161. doi: 10.1016/j.molmet.2016.09.009. eCollection 2016 Dec.
7
Depletion of adipocyte sphingosine kinase 1 leads to cell hypertrophy, impaired lipolysis, and nonalcoholic fatty liver disease.
J Lipid Res. 2020 Oct;61(10):1328-1340. doi: 10.1194/jlr.RA120000875. Epub 2020 Jul 20.
8
LMO3 reprograms visceral adipocyte metabolism during obesity.
J Mol Med (Berl). 2021 Aug;99(8):1151-1171. doi: 10.1007/s00109-021-02089-9. Epub 2021 May 20.
9
Dysregulation of Amyloid Precursor Protein Impairs Adipose Tissue Mitochondrial Function and Promotes Obesity.
Nat Metab. 2019 Dec;1(12):1243-1257. doi: 10.1038/s42255-019-0149-1. Epub 2019 Dec 13.
10
Acute activation of adipocyte lipolysis reveals dynamic lipid remodeling of the hepatic lipidome.
J Lipid Res. 2024 Feb;65(2):100434. doi: 10.1016/j.jlr.2023.100434. Epub 2023 Aug 26.

引用本文的文献

1
Silybin inhibits succinate production and secretion in hepatocytes to reverse liver fibrosis.
Arch Pharm Res. 2025 Aug;48(7-8):782-797. doi: 10.1007/s12272-025-01560-2. Epub 2025 Jul 30.
3
The Role of Solute Carrier Family Transporters in Hepatic Steatosis and Hepatic Fibrosis.
J Clin Transl Hepatol. 2025 Mar 28;13(3):233-252. doi: 10.14218/JCTH.2024.00348. Epub 2025 Jan 22.
4
Effects of induced molting on lipid accumulation in liver of aged laying hens.
Poult Sci. 2025 Apr;104(4):104941. doi: 10.1016/j.psj.2025.104941. Epub 2025 Feb 21.
6
Mulberry and -based solid beverage attenuate hyperlipidemia and hepatic steatosis via adipose tissue-liver axis.
Food Sci Nutr. 2024 Apr 8;12(7):5052-5064. doi: 10.1002/fsn3.4155. eCollection 2024 Jul.
7
PAQR4 regulates adipocyte function and systemic metabolic health by mediating ceramide levels.
Nat Metab. 2024 Jul;6(7):1347-1366. doi: 10.1038/s42255-024-01078-9. Epub 2024 Jul 3.
8
A spatiotemporal proteomic map of human adipogenesis.
Nat Metab. 2024 May;6(5):861-879. doi: 10.1038/s42255-024-01025-8. Epub 2024 Apr 2.
10
The Emerging Importance of Mitochondria in White Adipocytes: Neither Last nor Least.
Endocrinol Metab (Seoul). 2023 Oct;38(5):493-503. doi: 10.3803/EnM.2023.1813. Epub 2023 Oct 10.

本文引用的文献

1
Metabolic Messengers: Adiponectin.
Nat Metab. 2019 Mar;1(3):334-339. doi: 10.1038/s42255-019-0041-z. Epub 2019 Mar 14.
2
Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation.
Nat Metab. 2019 Sep 30;1:966-974. doi: 10.1038/s42255-019-0115-y.
3
Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics.
Biochem J. 2020 Mar 13;477(5):985-1008. doi: 10.1042/BCJ20190468.
4
Dysregulation of Amyloid Precursor Protein Impairs Adipose Tissue Mitochondrial Function and Promotes Obesity.
Nat Metab. 2019 Dec;1(12):1243-1257. doi: 10.1038/s42255-019-0149-1. Epub 2019 Dec 13.
5
Preoperative Circulating Succinate Levels as a Biomarker for Diabetes Remission After Bariatric Surgery.
Diabetes Care. 2019 Oct;42(10):1956-1965. doi: 10.2337/dc19-0114. Epub 2019 Aug 2.
6
Past, present and future perspectives in nonalcoholic fatty liver disease.
Nat Rev Gastroenterol Hepatol. 2019 Jun;16(6):377-386. doi: 10.1038/s41575-019-0144-8.
7
Metabolic Targets in Nonalcoholic Fatty Liver Disease.
Cell Mol Gastroenterol Hepatol. 2019;8(2):247-267. doi: 10.1016/j.jcmgh.2019.04.007. Epub 2019 Apr 18.
8
Non-alcoholic fatty liver disease - A global public health perspective.
J Hepatol. 2019 Mar;70(3):531-544. doi: 10.1016/j.jhep.2018.10.033. Epub 2018 Nov 9.
9
Determinants of ectopic liver fat in metabolic disease.
Eur J Clin Nutr. 2019 Feb;73(2):209-214. doi: 10.1038/s41430-018-0323-7. Epub 2018 Oct 15.
10
Metformin downregulates the mitochondrial carrier SLC25A10 in a glucose dependent manner.
Biochem Pharmacol. 2018 Oct;156:444-450. doi: 10.1016/j.bcp.2018.09.015. Epub 2018 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验