Chen Yongxin, Georgiou Tryphon, Tannenbaum Allen
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332.
Department of Mechanical & Aerospace Engineering, University of Calfornia, Irvine, CA 92697-3975.
IEEE Trans Automat Contr. 2020 Jul;65(7):1. doi: 10.1109/tac.2019.2939625. Epub 2019 Sep 5.
We consider damped stochastic systems in a controlled (time-varying) potential and study their transition between specified Gibbs-equilibria states in finite time. By the second law of thermodynamics, the minimum amount of work needed to transition from one equilibrium state to another is the difference between the Helmholtz free energy of the two states and can only be achieved by a reversible (infinitely slow) process. The minimal gap between the work needed in a finite-time transition and the work during a reversible one, turns out to equal the square of the optimal mass transport (Wasserstein-2) distance between the two end-point distributions times the inverse of the duration needed for the transition. This result, in fact, relates non-equilibrium optimal control strategies (protocols) to gradient flows of entropy functionals via the Jordan-Kinderlehrer-Otto scheme. The purpose of this paper is to introduce ideas and results from the emerging field of stochastic thermodynamics in the setting of classical regulator theory, and to draw connections and derive such fundamental relations from a control perspective in a multivariable setting.
我们考虑处于受控(时变)势中的阻尼随机系统,并研究它们在有限时间内从特定吉布斯平衡态之间的转变。根据热力学第二定律,从一个平衡态转变到另一个平衡态所需的最小功量是两个状态的亥姆霍兹自由能之差,并且只能通过可逆(无限缓慢)过程来实现。事实证明,有限时间转变所需的功与可逆转变过程中的功之间的最小差距,等于两个端点分布之间最优质量传输(瓦瑟斯坦 - 2)距离的平方乘以转变所需持续时间的倒数。实际上,这个结果通过乔丹 - 金德勒勒尔 - 奥托方案将非平衡最优控制策略(协议)与熵泛函的梯度流联系起来。本文的目的是在经典调节器理论的背景下引入随机热力学这一新兴领域的思想和结果,并从多变量设置中的控制角度建立联系并推导此类基本关系。