Suppr超能文献

非完整力学中一个加速度问题的范式与平均法

Normal forms and averaging in an acceleration problem in nonholonomic mechanics.

作者信息

Bizyaev Ivan, Bolotin Sergey, Mamaev Ivan

机构信息

Ural Mathematical Center, Udmurt State University, Universitetskaya 1, Izhevsk 426034, Russia.

Moscow Steklov Mathematical Institute, Gubkina 8, Moscow 119991, Russia.

出版信息

Chaos. 2021 Jan;31(1):013132. doi: 10.1063/5.0030889.

Abstract

This paper investigates nonholonomic systems (the Chaplygin sleigh and the Suslov system) with periodically varying mass distribution. In these examples, the behavior of velocities is described by a system of the form dvdτ=f(τ)u+f(τ)u+f(τ),dudτ=-uv+g(τ), where the coefficients are periodic functions of time τ with the same period. A detailed analysis is made of the problem of the existence of modes of motion for which the system speeds up indefinitely (an analog of Fermi's acceleration). It is proved that, depending on the choice of coefficients, variable v has the asymptotics t,k=1,2,3. In addition, we show regions of the phase space for which the system, when the trajectories are started from them, is observed to speed up. The proof uses normal forms and averaging in a slightly unusual form since unusual form averaging is performed over a variable that is not fast.

摘要

本文研究质量分布随时间周期性变化的非完整系统(恰普雷金雪橇系统和苏斯洛夫系统)。在这些例子中,速度的行为由形如(\frac{dv}{d\tau}=f(\tau)u + f(\tau)u + f(\tau)),(\frac{du}{d\tau}=-uv + g(\tau))的系统描述,其中系数是时间(\tau)的周期函数,且具有相同周期。对系统速度无限增加的运动模式的存在性问题(费米加速的类似情况)进行了详细分析。证明了根据系数的选择,变量(v)具有渐近形式(t,k = 1,2,3)。此外,我们展示了相空间中这样的区域,当轨迹从这些区域开始时,系统会加速。证明过程使用了范式和一种略有不同形式的平均法,因为这种不同寻常形式的平均是对一个非快速变量进行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验