Suppr超能文献

光致变色循环中瞬态中间产物的高分辨率晶体结构。

High-resolution crystal structures of transient intermediates in the phytochrome photocycle.

机构信息

Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA.

Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA.

出版信息

Structure. 2021 Jul 1;29(7):743-754.e4. doi: 10.1016/j.str.2021.03.004. Epub 2021 Mar 22.

Abstract

Phytochromes are red/far-red light photoreceptors in bacteria to plants, which elicit a variety of important physiological responses. They display a reversible photocycle between the resting Pr state and the light-activated Pfr state. Light signals are transduced as structural change through the entire protein to modulate its activity. It is unknown how the Pr-to-Pfr interconversion occurs, as the structure of intermediates remains notoriously elusive. Here, we present short-lived crystal structures of the photosensory core modules of the bacteriophytochrome from myxobacterium Stigmatella aurantiaca captured by an X-ray free electron laser 5 ns and 33 ms after light illumination of the Pr state. We observe large structural displacements of the covalently bound bilin chromophore, which trigger a bifurcated signaling pathway that extends through the entire protein. The snapshots show with atomic precision how the signal progresses from the chromophore, explaining how plants, bacteria, and fungi sense red light.

摘要

光敏色素是细菌到植物中红/远红光光受体,能引起各种重要的生理反应。它们在静止的 Pr 态和光激活的 Pfr 态之间表现出可逆的光循环。光信号通过整个蛋白质的结构变化转导,从而调节其活性。目前尚不清楚 Pr 态到 Pfr 态的互变如何发生,因为中间态的结构仍然难以捉摸。在这里,我们通过 X 射线自由电子激光在光照射 Pr 态后 5ns 和 33ms 捕获了粘细菌橙色着色菌的光敏色素的感光核心模块的短寿命晶体结构。我们观察到共价结合的类胡萝卜素发色团的大结构位移,这触发了一个分叉的信号通路,延伸到整个蛋白质。这些快照以原子精度显示了信号如何从发色团传递,解释了植物、细菌和真菌如何感知红光。

相似文献

1
High-resolution crystal structures of transient intermediates in the phytochrome photocycle.
Structure. 2021 Jul 1;29(7):743-754.e4. doi: 10.1016/j.str.2021.03.004. Epub 2021 Mar 22.
2
Phototransformation of the red light sensor cyanobacterial phytochrome 2 from Synechocystis species depends on its tongue motifs.
J Biol Chem. 2014 Sep 12;289(37):25590-600. doi: 10.1074/jbc.M114.562082. Epub 2014 Jul 10.
3
Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15639-44. doi: 10.1073/pnas.0902178106. Epub 2009 Aug 31.
6
Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14715-20. doi: 10.1073/pnas.0806718105. Epub 2008 Sep 17.
7
Distinct chromophore-protein environments enable asymmetric activation of a bacteriophytochrome-activated diguanylate cyclase.
J Biol Chem. 2020 Jan 10;295(2):539-551. doi: 10.1074/jbc.RA119.011915. Epub 2019 Dec 4.
10

引用本文的文献

1
Pr and Pfr structures of plant phytochrome A.
Nat Commun. 2025 Jun 21;16(1):5319. doi: 10.1038/s41467-025-60738-w.
2
Milestones in the development of as a model multicellular bacterium.
J Bacteriol. 2025 Jul 24;207(7):e0007125. doi: 10.1128/jb.00071-25. Epub 2025 Jun 17.
5
Structures of myxobacterial phytochrome revealed by cryo-EM using the Spotiton technique and with x-ray crystallography.
Struct Dyn. 2025 May 1;12(3):034701. doi: 10.1063/4.0000301. eCollection 2025 May.
6
Structural effects of high laser power densities on an early bacteriorhodopsin photocycle intermediate.
Nat Commun. 2024 Nov 27;15(1):10278. doi: 10.1038/s41467-024-54422-8.
7
Exploiting fourth-generation synchrotron radiation for enzyme and photoreceptor characterization.
IUCrJ. 2025 Jan 1;12(Pt 1):36-48. doi: 10.1107/S2052252524010868.
9
Photoreception and signaling in bacterial phytochrome revealed by single-particle cryo-EM.
Sci Adv. 2024 Aug 9;10(32):eadq0653. doi: 10.1126/sciadv.adq0653.

本文引用的文献

1
Tips and turns of bacteriophytochrome photoactivation.
Photochem Photobiol Sci. 2020 Nov 11;19(11):1488-1510. doi: 10.1039/d0pp00117a.
2
Signaling Mechanism of Phytochromes in Solution.
Structure. 2021 Feb 4;29(2):151-160.e3. doi: 10.1016/j.str.2020.08.009. Epub 2020 Sep 10.
3
Femtosecond-to-millisecond structural changes in a light-driven sodium pump.
Nature. 2020 Jul;583(7815):314-318. doi: 10.1038/s41586-020-2307-8. Epub 2020 May 20.
4
Illumination guidelines for ultrafast pump-probe experiments by serial femtosecond crystallography.
Nat Methods. 2020 Jul;17(7):681-684. doi: 10.1038/s41592-020-0847-3. Epub 2020 May 25.
5
Single-particle imaging by x-ray free-electron lasers-How many snapshots are needed?
Struct Dyn. 2020 Mar 20;7(2):024102. doi: 10.1063/1.5144516. eCollection 2020 Mar.
7
Modulation of Structural Heterogeneity Controls Phytochrome Photoswitching.
Biophys J. 2020 Jan 21;118(2):415-421. doi: 10.1016/j.bpj.2019.11.025. Epub 2019 Nov 26.
8
High-viscosity sample-injection device for serial femtosecond crystallography at atmospheric pressure.
J Appl Crystallogr. 2019 Oct 17;52(Pt 6):1280-1288. doi: 10.1107/S1600576719012846. eCollection 2019 Dec 1.
9
Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants.
Nat Commun. 2019 Nov 19;10(1):5219. doi: 10.1038/s41467-019-13045-0.
10
Time-resolved serial femtosecond crystallography at the European XFEL.
Nat Methods. 2020 Jan;17(1):73-78. doi: 10.1038/s41592-019-0628-z. Epub 2019 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验