Laboratoire de Structure, Elaboration et Applications des Matériaux Moléculaires (SEA2M), Département de Génie des Procédés, Université de Mostaganem, Algeria; Laboratoire de Synthèse & Catalyse (L.S.C.T.), Département de chimie, Université Ibn Khaldoun Tiaret, BP P 78 zaâroura, 14000 Tiaret, Algeria.
Laboratoire de Structure, Elaboration et Applications des Matériaux Moléculaires (SEA2M), Département de Génie des Procédés, Université de Mostaganem, Algeria.
J Hazard Mater. 2021 Aug 5;415:125656. doi: 10.1016/j.jhazmat.2021.125656. Epub 2021 Mar 15.
Halloysite was processed at 600 °C and then by acid leaching with HCl solutions of different concentrations, i.e. 0.5, 3 and 5 N (H600-xN; x = 0.5, 3 or 5). The resulting materials underwent chemical, textural, and laser diffraction analyses and were used in crystal violet (CV) adsorption. Bath experiments were conducted to evaluate the parameters influencing adsorption. A hydrophobicity study by adsorption of water/toluene and a spectroscopic investigation by FTIR and Raman were conducted, to understand the interaction mechanism. The affinity for CV is as follows: H600-0.5N (115 mg) > H600-3N (434 mg) > H600-5N (503 mg) > H600-0N (61 mg). The maximum adsorption of H600-0.5N would be explained by optimal hydrophilic and hydrophobic properties. Dealumination leads to the creation of more silanols responsible for hydrophilicity. Dehydroxylation at 600 °C combined with dealumination would induce a partial transformation of silanols into siloxanes which are responsible for organophilicity. The CV-H600-0.5N interaction implies two mechanisms: hydrophobic interactions and hydrogen bond. This study focused on hydrophobic interaction as a non-negligible component governing the interaction of organic contaminants with 1:1 clay minerals, while it was not sufficiently considered in the scientific literature.
埃洛石在 600°C 下进行处理,然后用不同浓度的 HCl 溶液进行酸浸,即 0.5、3 和 5N(H600-xN;x=0.5、3 或 5)。所得材料进行了化学、结构和激光衍射分析,并用于结晶紫(CV)吸附。进行了浴实验以评估影响吸附的参数。通过吸附水/甲苯进行疏水性研究,并通过 FTIR 和拉曼进行光谱研究,以了解相互作用机制。对 CV 的亲和力如下:H600-0.5N(115mg)>H600-3N(434mg)>H600-5N(503mg)>H600-0N(61mg)。H600-0.5N 的最大吸附可以用最佳的亲水性和疏水性来解释。脱铝作用导致更多硅醇的形成,从而增加了亲水性。在 600°C 下脱羟与脱铝相结合,会导致部分硅醇转化为硅氧烷,从而增加疏水性。CV-H600-0.5N 的相互作用涉及两种机制:疏水相互作用和氢键。本研究侧重于疏水相互作用,因为它是控制有机污染物与 1:1 粘土矿物相互作用的一个不可忽视的组成部分,而在科学文献中尚未得到充分考虑。