Department of Physics, Ryerson University, Toronto, ON, Canada; Department of Medical Physics, Walker Family Cancer Centre, St. Catharines, ON, Canada.
Department of Medical Physics, Walker Family Cancer Centre, St. Catharines, ON, Canada.
Phys Med. 2021 Mar;83:101-107. doi: 10.1016/j.ejmp.2021.02.021. Epub 2021 Mar 20.
To develop a deep learning model capable of producing clinically acceptable dose distributions for left-sided breast cancers for 3D-CRT while exploring the use of two-dimensional versus three-dimensional anatomical data.
Two deep learning models, a two-dimensional and three-dimensional model, based on U-net architecture were trained to predict dose distribution given anatomical information and dose prescription. The input consists of 6 channels including the patient CT along with binary masks for four OARs and one covering the volume receiving 95% dose (based on the clinical plan). A training set of 120 patients was compiled and used with 5-fold cross validation. The best performing model from the 5 folds was analyzed with a test set of 25 patients using cumulative DVH, mean differences in mean dose to OARs represented by box plots, and V20 of the left lung.
We have shown that both models are capable of producing clinically acceptable dose distributions, with the 3D outperforming the 2D model. The average dose difference for mean dose is within 0.02% of the dose prescription for both models. The V20 from the predicted dose distributions are comparable with the V20 from clinical plans, where predictions tend to be slightly under.
Based on the results, the models could be implemented clinically to produce dose distributions that can be used as a reference to ensure the most ideal plan is used. Each prediction is patient-specific while requiring minimal time and information creating a new standard in plan quality without hindering the planning process.
开发一种深度学习模型,能够为左侧乳腺癌的 3D-CRT 生成临床可接受的剂量分布,同时探索使用二维与三维解剖数据。
基于 U 形网络架构,我们训练了两个深度学习模型,即二维模型和三维模型,以预测给定解剖信息和剂量处方的剂量分布。输入包括 6 个通道,包括患者 CT 以及四个 OAR 的二进制掩模和一个覆盖接收 95%剂量的体积(基于临床计划)。我们编译了一个包含 120 个患者的训练集,并使用 5 折交叉验证。使用 25 个患者的测试集分析来自 5 个折叠的表现最佳的模型,方法是使用累积剂量 - 体积直方图(DVH)、表示 OAR 平均剂量差异的箱线图以及左肺的 V20 进行分析。
我们已经表明,这两个模型都能够生成临床可接受的剂量分布,三维模型优于二维模型。两个模型的平均剂量差异均在 0.02%的剂量处方内。预测剂量分布的 V20 与临床计划的 V20 相当,预测值往往略低。
基于结果,这些模型可以在临床上实施,以生成可作为参考的剂量分布,以确保使用最理想的计划。每个预测都是针对特定患者的,同时需要最少的时间和信息,在不影响规划过程的情况下为计划质量创造了新标准。