Suppr超能文献

强大的 p 值组合方法,用于检测不完全关联。

Powerful p-value combination methods to detect incomplete association.

机构信息

Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.

Department of Statistics, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

Sci Rep. 2021 Mar 26;11(1):6980. doi: 10.1038/s41598-021-86465-y.

Abstract

Meta-analyses increase statistical power by combining statistics from multiple studies. Meta-analysis methods have mostly been evaluated under the condition that all the data in each study have an association with the given phenotype. However, specific experimental conditions in each study or genetic heterogeneity can result in "unassociated statistics" that are derived from the null distribution. Here, we show that power of conventional meta-analysis methods rapidly decreases as an increasing number of unassociated statistics are included, whereas the classical Fisher's method and its weighted variant (wFisher) exhibit relatively high power that is robust to addition of unassociated statistics. We also propose another robust method based on joint distribution of ordered p-values (ordmeta). Simulation analyses for t-test, RNA-seq, and microarray data demonstrated that wFisher and ordmeta, when only a small number of studies have an association, outperformed existing meta-analysis methods. We performed meta-analyses of nine microarray datasets (prostate cancer) and four association summary datasets (body mass index), where our methods exhibited high biological relevance and were able to detect genes that the-state-of-the-art methods missed. The metapro R package that implements the proposed methods is available from both CRAN and GitHub ( http://github.com/unistbig/metapro ).

摘要

元分析通过合并来自多个研究的统计数据来增加统计功效。元分析方法主要在每个研究中的所有数据都与给定表型相关联的条件下进行评估。然而,每个研究中的特定实验条件或遗传异质性可能导致源自零分布的“不相关统计量”。在这里,我们表明,随着越来越多的不相关统计量被包括在内,传统的元分析方法的功效迅速下降,而经典的 Fisher 方法及其加权变体(wFisher)表现出相对较高的功效,对不相关统计量的添加具有鲁棒性。我们还提出了另一种基于有序 p 值联合分布的稳健方法(ordmeta)。针对 t 检验、RNA-seq 和微阵列数据的模拟分析表明,当只有少数研究具有关联时,wFisher 和 ordmeta 优于现有的元分析方法。我们对 9 个微阵列数据集(前列腺癌)和 4 个关联汇总数据集(体重指数)进行了元分析,我们的方法表现出较高的生物学相关性,并能够检测到现有方法错过的基因。实现所提出方法的 metapro R 包可从 CRAN 和 GitHub(http://github.com/unistbig/metapro)获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a71f/7997958/d71810f8c8cb/41598_2021_86465_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验