Bhalodia Riddhish, Lee Iain, Elhabian Shireen
Scientific Computing and Imaging Institute, School of Computing, University of Utah, Salt Lake City, UT, USA.
Comput Vis ACCV. 2020 Nov-Dec;12625:643-660. doi: 10.1007/978-3-030-69538-5_39. Epub 2021 Feb 25.
Unsupervised representation learning via generative modeling is a staple to many computer vision applications in the absence of labeled data. Variational Autoencoders (VAEs) are powerful generative models that learn representations useful for data generation. However, due to inherent challenges in the training objective, VAEs fail to learn useful representations amenable for downstream tasks. Regularization-based methods that attempt to improve the representation learning aspect of VAEs come at a price: poor sample generation. In this paper, we explore this representation-generation trade-off for regularized VAEs and introduce a new family of priors, namely decoupled priors, or dpVAEs, that decouple the representation space from the generation space. This decoupling enables the use of VAE regularizers on the representation space without impacting the distribution used for sample generation, and thereby reaping the representation learning benefits of the regularizations without sacrificing the sample generation. dpVAE leverages invertible networks to learn a bijective mapping from an arbitrarily complex representation distribution to a simple, tractable, generative distribution. Decoupled priors can be adapted to the state-of-the-art VAE regularizers without additional hyperparameter tuning. We showcase the use of dpVAEs with different regularizers. Experiments on MNIST, SVHN, and CelebA demonstrate, quantitatively and qualitatively, that dpVAE fixes sample generation for regularized VAEs.
在缺乏标注数据的情况下,通过生成模型进行无监督表示学习是许多计算机视觉应用的关键。变分自编码器(VAE)是强大的生成模型,可学习对数据生成有用的表示。然而,由于训练目标中存在的固有挑战,VAE无法学习适用于下游任务的有用表示。基于正则化的方法试图改进VAE的表示学习方面,但代价是:样本生成效果不佳。在本文中,我们探讨了正则化VAE的这种表示-生成权衡,并引入了一类新的先验,即解耦先验(dpVAE),它将表示空间与生成空间解耦。这种解耦使得能够在表示空间上使用VAE正则化器,而不会影响用于样本生成的分布,从而在不牺牲样本生成的情况下获得正则化的表示学习益处。dpVAE利用可逆网络学习从任意复杂的表示分布到简单、易处理的生成分布的双射映射。解耦先验可以适应最先进的VAE正则化器,而无需额外的超参数调整。我们展示了使用具有不同正则化器的dpVAE。在MNIST、SVHN和CelebA上的实验从定量和定性两方面证明,dpVAE解决了正则化VAE的样本生成问题。