Suppr超能文献

使用 AutoDock4 进行蛋白-配体对接模拟聚焦于 SARS-CoV-2 的主要蛋白酶。

Protein-Ligand Docking Simulations with AutoDock4 Focused on the Main Protease of SARS-CoV-2.

机构信息

Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681 Porto Alegre/RS 90619-900, Brazil.

Universidad de Celaya, Carretera Panamericana, Rancho Pinto km 269, 38080 Celaya, Gto. Zip Code 38080, Guanajuato, Mexico.

出版信息

Curr Med Chem. 2021;28(37):7614-7633. doi: 10.2174/0929867328666210329094111.

Abstract

BACKGROUND

The main protease of SARS-CoV-2 (M) is one of the targets identified in SARS-CoV-2, the causative agent of COVID-19. The application of X-ray diffraction crystallography made available the three-dimensional structure of this protein target in complex with ligands, which paved the way for docking studies.

OBJECTIVE

Our goal here is to review recent efforts in the application of docking simulations to identify inhibitors of the M using the program AutoDock4.

METHODS

We searched PubMed to identify studies that applied AutoDock4 for docking against this protein target. We used the structures available for M to analyze intermolecular interactions and reviewed the methods used to search for inhibitors.

RESULTS

The application of docking against the structures available for the M found ligands with an estimated inhibition in the nanomolar range. Such computational approaches focused on the crystal structures revealed potential inhibitors of M that might exhibit pharmacological activity against SARS-CoV-2. Nevertheless, most of these studies lack the proper validation of the docking protocol. Also, they all ignored the potential use of machine learning to predict affinity.

CONCLUSION

The combination of structural data with computational approaches opened the possibility to accelerate the search for drugs to treat COVID-19. Several studies used AutoDock4 to search for inhibitors of M. Most of them did not employ a validated docking protocol, which lends support to critics of their computational methodology. Furthermore, one of these studies reported the binding of chloroquine and hydroxychloroquine to M. This study ignores the scientific evidence against the use of these antimalarial drugs to treat COVID-19.

摘要

背景

SARS-CoV-2 的主要蛋白酶(M)是 COVID-19 病原体 SARS-CoV-2 中鉴定的靶点之一。X 射线衍射晶体学的应用提供了该蛋白靶标与配体复合物的三维结构,为对接研究铺平了道路。

目的

我们的目标是回顾最近应用对接模拟技术使用 AutoDock4 识别 M 的抑制剂的研究进展。

方法

我们在 PubMed 上搜索了应用 AutoDock4 对接该蛋白靶标的研究。我们使用 M 的可用结构来分析分子间相互作用,并回顾了搜索抑制剂的方法。

结果

对接应用于 M 的可用结构发现了具有纳摩尔级抑制作用的配体。这些针对晶体结构的计算方法揭示了 M 的潜在抑制剂,这些抑制剂可能对 SARS-CoV-2 表现出药理活性。然而,这些研究中的大多数都缺乏对接方案的适当验证。此外,它们都忽略了使用机器学习来预测亲和力的可能性。

结论

结构数据与计算方法的结合为加速寻找治疗 COVID-19 的药物提供了可能性。几项研究使用 AutoDock4 搜索 M 的抑制剂。它们中的大多数都没有使用经过验证的对接方案,这为他们的计算方法提出了批评。此外,其中一项研究报告了氯喹和羟氯喹与 M 的结合。这项研究忽略了这些抗疟药物治疗 COVID-19 的科学证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验