Suppr超能文献

肿瘤学临床研究中的无进展生存期:评估时间偏倚及其校正方法。

Progression-free survival in oncological clinical studies: Assessment time bias and methods for its correction.

机构信息

Merck Healthcare KGaA, Frankfurter Straße 250, Darmstadt, Hessen, 64293, Germany.

Department of Mathematics and Natural Sciences, University of Applied Sciences Darmstadt, Schöfferstraße 3, Darmstadt, Hessen, 64295, Germany.

出版信息

Pharm Stat. 2021 Jul;20(4):864-878. doi: 10.1002/pst.2115. Epub 2021 Mar 29.

Abstract

Progression-free survival (PFS) is a frequently used endpoint in oncological clinical studies. In case of PFS, potential events are progression and death. Progressions are usually observed delayed as they can be diagnosed not before the next study visit. For this reason potential bias of treatment effect estimates for progression-free survival is a concern. In randomized trials and for relative treatment effects measures like hazard ratios, bias-correcting methods are not necessarily required or have been proposed before. However, less is known on cross-trial comparisons of absolute outcome measures like median survival times. This paper proposes a new method for correcting the assessment time bias of progression-free survival estimates to allow a fair cross-trial comparison of median PFS. Using median PFS for example, the presented method approximates the unknown posterior distribution by a Bayesian approach based on simulations. It is shown that the proposed method leads to a substantial reduction of bias as compared to estimates derived from maximum likelihood or Kaplan-Meier estimates. Bias could be reduced by more than 90% over a broad range of considered situations differing in assessment times and underlying distributions. By coverage probabilities of at least 94% based on the credibility interval of the posterior distribution the resulting parameters hold common confidence levels. In summary, the proposed approach is shown to be useful for a cross-trial comparison of median PFS.

摘要

无进展生存期 (PFS) 是肿瘤临床研究中常用的终点指标。在 PFS 的情况下,潜在事件是进展和死亡。进展通常观察到延迟,因为它们在下一次研究访问之前不能被诊断出来。因此,对无进展生存期的治疗效果估计的潜在偏差是一个关注点。在随机试验中,对于相对治疗效果指标,如风险比,不需要或已经提出了偏倚校正方法。然而,对于绝对结果指标(如中位生存期)的交叉试验比较,了解较少。本文提出了一种新的方法来校正无进展生存期估计的评估时间偏倚,以允许对中位 PFS 进行公平的交叉试验比较。例如,使用中位 PFS,所提出的方法通过基于模拟的贝叶斯方法来近似未知的后验分布。结果表明,与最大似然或 Kaplan-Meier 估计值得出的估计值相比,该方法可显著减少偏差。在评估时间和基础分布不同的广泛情况下,偏差可减少 90%以上。基于后验分布的可信度区间,覆盖率概率至少为 94%,从而保证了参数具有共同的置信水平。总之,所提出的方法对于中位 PFS 的交叉试验比较是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验