Universidad Complutense de Madrid, Madrid, Spain.
Astrobiology. 2021 Jun;21(6):718-728. doi: 10.1089/ast.2020.2310. Epub 2021 Apr 1.
Life is pervasive on planet Earth, but whether life is ubiquitous in the Galaxy and sustainable over timescales comparable to stellar evolution is unknown. Evidence suggests that life first appeared on Earth more than 3.77 Gyr ago, during a period of heavy meteoric bombardment. Amino acids, the building blocks of proteins, have been demonstrated to exist in interstellar ice. As such, the contribution of space-generated amino acids to those existing on Earth should be considered. However, detection of space amino acids is challenging. In this study, we used analytical data from several meteorites and measurements of the comet 67P/Churyumov-Gerasimenko collected by the Rosetta probe to evaluate the detectability of alanine by ultraviolet spectropolarimetry. Alanine is the second-most abundant amino acid after glycine and is optically active. This chirality produces a unique signature that enables reliable identification of this amino acid using the imprint of optical rotatory dispersion (ORD) and circular dichroism (CD) in the ultraviolet spectrum (130-230 nm). Here, we show that the ORD signature could be detected in comets by using ultraviolet spectropolarimetric observations conducted at middle size space observatories. These observations can also provide crucial information for the study of sources of enantiomeric imbalance on Earth.
生命在地球上无处不在,但生命是否在银河系中普遍存在,以及是否能够在与恒星演化相当的时间尺度上持续存在,目前还不得而知。有证据表明,生命最早出现在 37.7 亿年前地球遭受大量陨石撞击期间。氨基酸是蛋白质的组成部分,已被证明存在于星际冰中。因此,应该考虑到太空产生的氨基酸对地球上已存在的氨基酸的贡献。然而,检测太空氨基酸具有挑战性。在这项研究中,我们使用了来自几颗陨石的分析数据以及罗塞塔探测器对彗星 67P/楚留莫夫-格拉希门克的测量结果,来评估紫外线旋光分光光度法对丙氨酸的检测能力。丙氨酸是除甘氨酸之外第二丰富的氨基酸,并且具有光学活性。这种手性产生了独特的特征,使得使用紫外线光谱(130-230nm)中的旋光色散(ORD)和圆二色性(CD)印记能够可靠地识别这种氨基酸。在这里,我们表明可以通过在中等大小的空间观测站进行紫外线旋光分光光度观测来检测彗星中的 ORD 特征。这些观测结果还可以为研究地球上对映体失衡的来源提供关键信息。