Suppr超能文献

考虑复杂约束的下行多信道非正交多址接入系统的高效分配

Efficient Allocation for Downlink Multi-Channel NOMA Systems Considering Complex Constraints.

作者信息

Xu Zhengjia, Petrunin Ivan, Li Teng, Tsourdos Antonios

机构信息

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK.

出版信息

Sensors (Basel). 2021 Mar 6;21(5):1833. doi: 10.3390/s21051833.

Abstract

To enable an efficient dynamic power and channel allocation (DPCA) for users in the downlink multi-channel non-orthogonal multiple access (MC-NOMA) systems, this paper regards the optimization as the combinatorial problem, and proposes three heuristic solutions, i.e., stochastic algorithm, two-stage greedy randomized adaptive search (GRASP), and two-stage stochastic sample greedy (SSD). Additionally, multiple complicated constraints are taken into consideration according to practical scenarios, for instance, the capacity for per sub-channel, power budget for per sub-channel, power budget for users, minimum data rate, and the priority control during the allocation. The effectiveness of the algorithms is compared by demonstration, and the algorithm performance is compared by simulations. Stochastic solution is useful for the overwhelmed sub-channel resources, i.e., spectrum dense environment with less data rate requirement. With small sub-channel number, i.e., spectrum scarce environment, both GRASP and SSD outperform the stochastic algorithm in terms of bigger data rate (achieve more than six times higher data rate) while having a shorter running time. SSD shows benefits with more channels compared with GRASP due to the low computational complexity (saves 66% running time compared with GRASP while maintaining similar data rate outcomes). With a small sub-channel number, GRASP shows a better performance in terms of the average data rate, variance, and time consumption than SSG.

摘要

为了在下行多信道非正交多址接入(MC-NOMA)系统中为用户实现高效的动态功率和信道分配(DPCA),本文将该优化视为组合问题,并提出了三种启发式解决方案,即随机算法、两阶段贪婪随机自适应搜索(GRASP)和两阶段随机样本贪婪(SSD)。此外,根据实际场景考虑了多个复杂约束,例如每个子信道的容量、每个子信道的功率预算、用户的功率预算、最小数据速率以及分配过程中的优先级控制。通过论证比较了算法的有效性,并通过仿真比较了算法性能。随机解决方案适用于子信道资源过剩的情况,即数据速率要求较低的频谱密集环境。在子信道数量较少的情况下,即频谱稀缺环境中,GRASP和SSD在数据速率更高(实现的数据速率高出六倍以上)且运行时间更短方面均优于随机算法。与GRASP相比,SSD在信道数量更多时表现出优势,这是由于其计算复杂度较低(与GRASP相比节省了66% 的运行时间,同时保持相似的数据速率结果)。在子信道数量较少时,GRASP在平均数据速率、方差和时间消耗方面比SSG表现出更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fef/7961776/110dfbc91650/sensors-21-01833-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验