Suppr超能文献

复杂系统中动态组织的渐近信息论检测

Asymptotic Information-Theoretic Detection of Dynamical Organization in Complex Systems.

作者信息

D'Addese Gianluca, Sani Laura, La Rocca Luca, Serra Roberto, Villani Marco

机构信息

Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy.

Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy.

出版信息

Entropy (Basel). 2021 Mar 27;23(4):398. doi: 10.3390/e23040398.

Abstract

The identification of emergent structures in complex dynamical systems is a formidable challenge. We propose a computationally efficient methodology to address such a challenge, based on modeling the state of the system as a set of random variables. Specifically, we present a sieving algorithm to navigate the huge space of all subsets of variables and compare them in terms of a simple index that can be computed without resorting to simulations. We obtain such a simple index by studying the asymptotic distribution of an information-theoretic measure of coordination among variables, when there is no coordination at all, which allows us to fairly compare subsets of variables having different cardinalities. We show that increasing the number of observations allows the identification of larger and larger subsets. As an example of relevant application, we make use of a paradigmatic case regarding the identification of groups in autocatalytic sets of reactions, a chemical situation related to the origin of life problem.

摘要

识别复杂动力系统中的涌现结构是一项艰巨的挑战。我们基于将系统状态建模为一组随机变量,提出了一种计算效率高的方法来应对这一挑战。具体而言,我们提出一种筛选算法,用于在变量的所有子集的巨大空间中进行搜索,并根据一个无需借助模拟即可计算的简单指标对它们进行比较。我们通过研究变量之间完全不存在协同作用时的信息理论协同度量的渐近分布来获得这样一个简单指标,这使我们能够公平地比较具有不同基数的变量子集。我们表明,增加观测次数可以识别越来越大的子集。作为相关应用的一个例子,我们利用了一个关于自催化反应集里的群组识别的典型案例,这是一种与生命起源问题相关的化学情形。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/991c/8066289/67c0afaa7d71/entropy-23-00398-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验