Schicker Klaus, Bhat Shreyas, Farr Clemens, Burtscher Verena, Horner Andreas, Freissmuth Michael, Sandtner Walter
Center for Physiology and Pharmacology, Division of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria.
Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria.
Membranes (Basel). 2021 Mar 3;11(3):178. doi: 10.3390/membranes11030178.
Plasmalemmal solute carriers (SLC) gauge and control solute abundance across cellular membranes. By virtue of this action, they play an important role in numerous physiological processes. Mutations in genes encoding the SLCs alter amino acid sequence that often leads to impaired protein function and onset of monogenic disorders. To understand how these altered proteins cause disease, it is necessary to undertake relevant functional assays. These experiments reveal descriptors of SLC function such as the maximal transport velocity (V), the Michaelis constant for solute uptake (K), potencies for inhibition of transporter function (IC/EC), and many more. In several instances, the mutated versions of different SLC transporters differ from their wild-type counterparts in the value of these descriptors. While determination of these experimental parameters can provide conjecture as to how the mutation gives rise to disease, they seldom provide any definitive insights on how a variant differ from the wild-type transporter in its operation. This is because the experimental determination of association between values of the descriptors and several partial reactions a transporter undergoes is casual, but not causal, at best. In the present study, we employ kinetic models that allow us to derive explicit mathematical terms and provide experimental descriptors as a function of the rate constants used to parameterize the kinetic model of the transport cycle. We show that it is possible to utilize these mathematical expressions to deduce, from experimental outcomes, how the mutation has impinged on partial reactions in the transport cycle.
质膜溶质载体(SLC)调节并控制跨细胞膜的溶质丰度。凭借这一作用,它们在众多生理过程中发挥着重要作用。编码SLC的基因突变会改变氨基酸序列,这通常会导致蛋白质功能受损和单基因疾病的发生。为了了解这些改变的蛋白质如何引发疾病,有必要进行相关的功能测定。这些实验揭示了SLC功能的描述指标,如最大转运速度(V)、溶质摄取的米氏常数(K)、转运蛋白功能抑制效力(IC/EC)等等。在一些情况下,不同SLC转运蛋白的突变版本在这些描述指标的值上与其野生型对应物有所不同。虽然确定这些实验参数可以推测突变如何引发疾病,但它们很少能提供关于变体在其运作方式上与野生型转运蛋白有何不同的明确见解。这是因为对描述指标值与转运蛋白所经历的几个部分反应之间关联的实验测定充其量只是偶然的,而非因果关系。在本研究中,我们采用动力学模型,使我们能够推导出明确的数学表达式,并将实验描述指标表示为用于参数化转运循环动力学模型的速率常数的函数。我们表明,利用这些数学表达式从实验结果中推断突变如何影响转运循环中的部分反应是可能的。