Suppr超能文献

深度学习驱动的低剂量 CT 降噪。

Deep Learning Driven Noise Reduction for Reduced Flux Computed Tomography.

机构信息

College of Petroleum Engineering and Geosciences (CPG), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.

Institute of Applied Mathematics, Middle East Technical University (METU), Ankara 06590, Turkey.

出版信息

Sensors (Basel). 2021 Mar 9;21(5):1921. doi: 10.3390/s21051921.

Abstract

Deep neural networks have received considerable attention in clinical imaging, particularly with respect to the reduction of radiation risk. Lowering the radiation dose by reducing the photon flux inevitably results in the degradation of the scanned image quality. Thus, researchers have sought to exploit deep convolutional neural networks (DCNNs) to map low-quality, low-dose images to higher-dose, higher-quality images, thereby minimizing the associated radiation hazard. Conversely, computed tomography (CT) measurements of geomaterials are not limited by the radiation dose. In contrast to the human body, however, geomaterials may be comprised of high-density constituents causing increased attenuation of the X-rays. Consequently, higher-dose images are required to obtain an acceptable scan quality. The problem of prolonged acquisition times is particularly severe for micro-CT based scanning technologies. Depending on the sample size and exposure time settings, a single scan may require several hours to complete. This is of particular concern if phenomena with an exponential temperature dependency are to be elucidated. A process may happen too fast to be adequately captured by CT scanning. To address the aforementioned issues, we apply DCNNs to improve the quality of rock CT images and reduce exposure times by more than 60%, simultaneously. We highlight current results based on micro-CT derived datasets and apply transfer learning to improve DCNN results without increasing training time. The approach is applicable to any computed tomography technology. Furthermore, we contrast the performance of the DCNN trained by minimizing different loss functions such as mean squared error and structural similarity index.

摘要

深度神经网络在临床成像中受到了广泛关注,特别是在降低辐射风险方面。通过降低光子通量来降低辐射剂量,不可避免地会导致扫描图像质量下降。因此,研究人员试图利用深度卷积神经网络(DCNN)将低质量、低剂量图像映射到高质量、高剂量图像,从而将相关辐射危害降到最低。相比之下,地质材料的计算机断层扫描(CT)测量不受辐射剂量的限制。然而,与人体不同,地质材料可能由高密度成分组成,导致 X 射线的衰减增加。因此,需要更高剂量的图像才能获得可接受的扫描质量。对于基于微 CT 的扫描技术,采集时间延长的问题尤其严重。根据样品大小和曝光时间设置,单个扫描可能需要数小时才能完成。如果要阐明具有指数温度依赖性的现象,则尤其令人关注。过程可能发生得太快,以至于 CT 扫描无法充分捕捉。为了解决上述问题,我们应用 DCNN 来提高岩石 CT 图像的质量,并将曝光时间缩短 60%以上。我们根据微 CT 衍生数据集展示了当前的结果,并应用迁移学习来提高 DCNN 的结果,而不增加训练时间。该方法适用于任何计算机断层扫描技术。此外,我们对比了通过最小化不同损失函数(如均方误差和结构相似性指数)来训练 DCNN 的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebab/7967200/a4d1c9a24070/sensors-21-01921-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验