Suppr超能文献

全钒氧化还原液流电池用聚合物膜:综述

Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review.

作者信息

Düerkop Dennis, Widdecke Hartmut, Schilde Carsten, Kunz Ulrich, Schmiemann Achim

机构信息

Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany.

Institute of Particle Technology, Braunschweig University of Technology, Volkmaroder Straße 5, 38100 Braunschweig, Germany.

出版信息

Membranes (Basel). 2021 Mar 18;11(3):214. doi: 10.3390/membranes11030214.

Abstract

Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995-2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.

摘要

氧化还原液流电池,如全钒氧化还原液流电池(VRFB),是一种用于大规模存储波动可再生能源的技术解决方案。在性能、循环稳定性以及成本降低方面对电池进行优化是主要研究领域,旨在实现更环保的能量转换,特别是对于固定应用。作为电化学电池的关键组件,膜会影响电池性能、循环稳定性、初始投资和维护成本。本综述概述了过去几年(1995 - 2020年)针对液流电池的膜。根据所使用的基础聚合物,将200多个膜样品分为氟碳化合物、碳氢化合物或N - 杂环化合物。此外,应用了膜技术中关于膜结构的常见描述,据此将样品分类为致密均质、致密非均质、对称或不对称多孔。此外,还讨论了这些特性以及从VRFB循环测试中获得的效率,例如氟碳化合物、碳氢化合物和N - 杂环化合物的膜样品作为电流密度的函数。考虑的膜特性包括膜厚度、离子交换容量、吸水率和钒离子扩散。比较了商业膜的循环稳定性和成本数据以及膜的发展情况。总体而言,这项研究表明,致密阴离子交换膜(AEM)和基于N - 杂环的膜,特别是聚苯并咪唑(PBI)膜,适用于自放电低的VRFB。对称和不对称多孔膜以及阳离子交换膜(CEM)可使VRFB在高电流密度下运行。两性离子交换膜(AIEM)和致密非均质CEM是具有最高能量效率运行模式的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1980/8003036/356fa5b46a99/membranes-11-00214-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验