Suppr超能文献

从无人机多光谱图像中区分不同复杂度的种植结构。

Distinguishing Planting Structures of Different Complexity from UAV Multispectral Images.

机构信息

Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China.

College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2021 Mar 12;21(6):1994. doi: 10.3390/s21061994.

Abstract

This study explores the classification potential of a multispectral classification model for farmland with planting structures of different complexity. Unmanned aerial vehicle (UAV) remote sensing technology is used to obtain multispectral images of three study areas with low-, medium-, and high-complexity planting structures, containing three, five, and eight types of crops, respectively. The feature subsets of three study areas are selected by recursive feature elimination (RFE). Object-oriented random forest (OB-RF) and object-oriented support vector machine (OB-SVM) classification models are established for the three study areas. After training the models with the feature subsets, the classification results are evaluated using a confusion matrix. The OB-RF and OB-SVM models' classification accuracies are 97.09% and 99.13%, respectively, for the low-complexity planting structure. The equivalent values are 92.61% and 99.08% for the medium-complexity planting structure and 88.99% and 97.21% for the high-complexity planting structure. For farmland with fragmentary plots and a high-complexity planting structure, as the planting structure complexity changed from low to high, both models' overall accuracy levels decreased. The overall accuracy of the OB-RF model decreased by 8.1%, and that of the OB-SVM model only decreased by 1.92%. OB-SVM achieves an overall classification accuracy of 97.21%, and a single-crop extraction accuracy of at least 85.65%. Therefore, UAV multispectral remote sensing can be used for classification applications in highly complex planting structures.

摘要

本研究探讨了多光谱分类模型在具有不同复杂程度种植结构的农田分类中的潜力。利用无人机(UAV)遥感技术获取了低、中、高三种种植结构复杂程度的三个研究区的多光谱图像,分别包含三种、五种和八种作物。通过递归特征消除(RFE)选择了三个研究区的特征子集。为三个研究区建立了面向对象随机森林(OB-RF)和面向对象支持向量机(OB-SVM)分类模型。用特征子集训练模型后,使用混淆矩阵评估分类结果。OB-RF 和 OB-SVM 模型对低复杂度种植结构的分类精度分别为 97.09%和 99.13%。对于中复杂度种植结构,等效值分别为 92.61%和 99.08%,对于高复杂度种植结构,等效值分别为 88.99%和 97.21%。对于具有零碎地块和高复杂度种植结构的农田,随着种植结构复杂度从低到高的变化,两个模型的整体精度水平都有所下降。OB-RF 模型的整体精度下降了 8.1%,而 OB-SVM 模型仅下降了 1.92%。OB-SVM 实现了 97.21%的整体分类精度,以及至少 85.65%的单种作物提取精度。因此,无人机多光谱遥感可用于高度复杂种植结构的分类应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d661/8000794/af9b67a8ee7a/sensors-21-01994-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验