García-Domínguez Antonio, Galvan-Tejada Carlos E, Zanella-Calzada Laura A, Gamboa Hamurabi, Galván-Tejada Jorge I, Celaya Padilla José María, Luna-García Huizilopoztli, Arceo-Olague Jose G, Magallanes-Quintanar Rafael
Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México.
LORIA, Université de Lorraine, Nancy, France.
PeerJ Comput Sci. 2020 Nov 9;6:e308. doi: 10.7717/peerj-cs.308. eCollection 2020.
Children activity recognition (CAR) is a subject for which numerous works have been developed in recent years, most of them focused on monitoring and safety. Commonly, these works use as data source different types of sensors that can interfere with the natural behavior of children, since these sensors are embedded in their clothes. This article proposes the use of environmental sound data for the creation of a children activity classification model, through the development of a deep artificial neural network (ANN). Initially, the ANN architecture is proposed, specifying its parameters and defining the necessary values for the creation of the classification model. The ANN is trained and tested in two ways: using a 70-30 approach (70% of the data for training and 30% for testing) and with a k-fold cross-validation approach. According to the results obtained in the two validation processes (70-30 splitting and k-fold cross validation), the ANN with the proposed architecture achieves an accuracy of 94.51% and 94.19%, respectively, which allows to conclude that the developed model using the ANN and its proposed architecture achieves significant accuracy in the children activity classification by analyzing environmental sound.
儿童活动识别(CAR)是近年来已有大量相关研究的一个课题,其中大部分研究集中在监测和安全方面。通常,这些研究使用不同类型的传感器作为数据源,由于这些传感器嵌入在儿童衣服中,可能会干扰儿童的自然行为。本文提出利用环境声音数据,通过开发深度人工神经网络(ANN)来创建儿童活动分类模型。首先,提出了ANN架构,指定其参数并定义创建分类模型所需的值。ANN通过两种方式进行训练和测试:使用70-30方法(70%的数据用于训练,30%用于测试)和k折交叉验证方法。根据在两个验证过程(70-30分割和k折交叉验证)中获得的结果,具有所提出架构的ANN分别达到了94.51%和94.19%的准确率,这表明通过分析环境声音,使用ANN及其所提出架构开发的模型在儿童活动分类中取得了显著的准确率。