Naz Mahwish, Shah Jamal Hussain, Khan Muhammad Attique, Sharif Muhammad, Raza Mudassar, Damaševičius Robertas
COMSATS University Islamabad, Wah, Pakistan.
HITEC University, Taxila, Pakistan.
PeerJ Comput Sci. 2021 Feb 10;7:e386. doi: 10.7717/peerj-cs.386. eCollection 2021.
Provocative heart disease is related to ventricular arrhythmias (VA). Ventricular tachyarrhythmia is an irregular and fast heart rhythm that emerges from inappropriate electrical impulses in the ventricles of the heart. Different types of arrhythmias are associated with different patterns, which can be identified. An electrocardiogram (ECG) is the major analytical tool used to interpret and record ECG signals. ECG signals are nonlinear and difficult to interpret and analyze. We propose a new deep learning approach for the detection of VA. Initially, the ECG signals are transformed into images that have not been done before. Later, these images are normalized and utilized to train the AlexNet, VGG-16 and Inception-v3 deep learning models. Transfer learning is performed to train a model and extract the deep features from different output layers. After that, the features are fused by a concatenation approach, and the best features are selected using a heuristic entropy calculation approach. Finally, supervised learning classifiers are utilized for final feature classification. The results are evaluated on the MIT-BIH dataset and achieved an accuracy of 97.6% (using Cubic Support Vector Machine as a final stage classifier).
应激性心脏病与室性心律失常(VA)有关。室性快速心律失常是一种不规则且快速的心律,由心脏心室中不适当的电冲动引发。不同类型的心律失常与不同模式相关联,这些模式可以被识别。心电图(ECG)是用于解释和记录心电图信号的主要分析工具。心电图信号是非线性的,难以解释和分析。我们提出了一种用于检测室性心律失常的新深度学习方法。首先,将心电图信号转换为以前未做过的图像。之后,对这些图像进行归一化处理,并用于训练AlexNet、VGG - 16和Inception - v3深度学习模型。进行迁移学习以训练模型并从不同输出层提取深度特征。然后,通过拼接方法融合这些特征,并使用启发式熵计算方法选择最佳特征。最后,使用监督学习分类器进行最终特征分类。在MIT - BIH数据集上对结果进行评估,使用立方支持向量机作为最终阶段分类器时达到了97.6%的准确率。