Suppr超能文献

从心电图信号到图像:一种基于变换的深度学习方法。

From ECG signals to images: a transformation based approach for deep learning.

作者信息

Naz Mahwish, Shah Jamal Hussain, Khan Muhammad Attique, Sharif Muhammad, Raza Mudassar, Damaševičius Robertas

机构信息

COMSATS University Islamabad, Wah, Pakistan.

HITEC University, Taxila, Pakistan.

出版信息

PeerJ Comput Sci. 2021 Feb 10;7:e386. doi: 10.7717/peerj-cs.386. eCollection 2021.

Abstract

Provocative heart disease is related to ventricular arrhythmias (VA). Ventricular tachyarrhythmia is an irregular and fast heart rhythm that emerges from inappropriate electrical impulses in the ventricles of the heart. Different types of arrhythmias are associated with different patterns, which can be identified. An electrocardiogram (ECG) is the major analytical tool used to interpret and record ECG signals. ECG signals are nonlinear and difficult to interpret and analyze. We propose a new deep learning approach for the detection of VA. Initially, the ECG signals are transformed into images that have not been done before. Later, these images are normalized and utilized to train the AlexNet, VGG-16 and Inception-v3 deep learning models. Transfer learning is performed to train a model and extract the deep features from different output layers. After that, the features are fused by a concatenation approach, and the best features are selected using a heuristic entropy calculation approach. Finally, supervised learning classifiers are utilized for final feature classification. The results are evaluated on the MIT-BIH dataset and achieved an accuracy of 97.6% (using Cubic Support Vector Machine as a final stage classifier).

摘要

应激性心脏病与室性心律失常(VA)有关。室性快速心律失常是一种不规则且快速的心律,由心脏心室中不适当的电冲动引发。不同类型的心律失常与不同模式相关联,这些模式可以被识别。心电图(ECG)是用于解释和记录心电图信号的主要分析工具。心电图信号是非线性的,难以解释和分析。我们提出了一种用于检测室性心律失常的新深度学习方法。首先,将心电图信号转换为以前未做过的图像。之后,对这些图像进行归一化处理,并用于训练AlexNet、VGG - 16和Inception - v3深度学习模型。进行迁移学习以训练模型并从不同输出层提取深度特征。然后,通过拼接方法融合这些特征,并使用启发式熵计算方法选择最佳特征。最后,使用监督学习分类器进行最终特征分类。在MIT - BIH数据集上对结果进行评估,使用立方支持向量机作为最终阶段分类器时达到了97.6%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e31a/7959637/7ac45664def6/peerj-cs-07-386-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验