Suppr超能文献

基于眼底照片和卷积神经网络的青光眼分期深度学习集成方法。

Deep Learning Ensemble Method for Classifying Glaucoma Stages Using Fundus Photographs and Convolutional Neural Networks.

机构信息

Intelligence and Robot System Research Group, Electronics & Telecommunication Research Institute, Daejeon, Republic of Korea.

Department of Ophthalmology, Chungnam National University Hospital, Daejeon, Republic of Korea.

出版信息

Curr Eye Res. 2021 Oct;46(10):1516-1524. doi: 10.1080/02713683.2021.1900268. Epub 2021 Apr 6.

Abstract

: This study developed and evaluated a deep learning ensemble method to automatically grade the stages of glaucoma depending on its severity.: After cross-validation of three glaucoma specialists, the final dataset comprised of 3,460 fundus photographs taken from 2,204 patients were divided into three classes: unaffected controls, early-stage glaucoma, and late-stage glaucoma. The mean deviation value of standard automated perimetry was used to classify the glaucoma cases. We modeled 56 convolutional neural networks (CNN) with different characteristics and developed an ensemble system to derive the best performance by combining several modeling results.: The proposed method with an accuracy of 88.1% and an average area under the receiver operating characteristic of 0.975 demonstrates significantly better performance to classify glaucoma stages compared to the best single CNN model that has an accuracy of 85.2% and an average area under the receiver operating characteristic of 0.950. The false negative is the least adjacent misprediction, and it is less in the proposed method than in the best single CNN model.: The method of averaging multiple CNN models can better classify glaucoma stages by using fundus photographs than a single CNN model. The ensemble method would be useful as a clinical decision support system in glaucoma screening for primary care because it provides high and stable performance with a relatively small amount of data.

摘要

本研究开发并评估了一种深度学习集成方法,以便根据严重程度自动对青光眼的阶段进行分级。在对三位青光眼专家进行交叉验证后,最终数据集由 2204 名患者的 3460 张眼底照片组成,分为三组:无影响对照组、早期青光眼和晚期青光眼。标准自动视野计的平均偏差值用于对青光眼病例进行分类。我们构建了 56 个具有不同特征的卷积神经网络(CNN),并开发了一个集成系统,通过结合多个建模结果来获得最佳性能。该方法的准确率为 88.1%,接收器工作特征曲线下的平均面积为 0.975,与准确率为 85.2%、接收器工作特征曲线下的平均面积为 0.950 的最佳单 CNN 模型相比,在对青光眼阶段进行分类方面表现出显著更好的性能。假阴性是最小的邻域误预测,在提出的方法中比在最佳单 CNN 模型中少。使用眼底照片,平均多个 CNN 模型的方法比单个 CNN 模型能够更好地对青光眼阶段进行分类。该集成方法将作为初级保健中青光眼筛查的临床决策支持系统很有用,因为它在相对较小的数据量下提供了高且稳定的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验