Suppr超能文献

应用不同干燥方法干燥的各类食品的微生物质量:综述

The microbiological quality of various foods dried by applying different drying methods: a review.

作者信息

Alp Duygu, Bulantekin Özcan

机构信息

Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey.

出版信息

Eur Food Res Technol. 2021;247(6):1333-1343. doi: 10.1007/s00217-021-03731-z. Epub 2021 Apr 2.

Abstract

With the drying process, the water activity and moisture content of the foods are reduced, so the growth of microorganisms in the foods is largely prevented/postponed. But low-aw foods should not be considered sterile they can be contaminated by fungi and other contaminants during the drying process under unhygienic conditions. If drying is not done to a sufficient degree of moisture during food processing and storage, where dried foods are processed, sometimes the minimum value is reached for the growth of microorganisms. In dry foods, some pathogens, yeast and molds can continue to grow during storage, transport and transportation until the sale and they causing spoilage. They can even cause health problems if enough pathogen or spore cells remain viable. Considering this situation today, it is attempted to obtain high-quality dried foods with good microbiologically and chemically properties. For this purpose, various drying methods have been developed. Most studies suggest that when foods are pre-treated with the ascorbic acid or sodium metabisulfite or applied with various combined methods such as UV irradiation, supercritical carbon dioxide (SCO), low-pressure superheated steam drying (LPSSD), and infrared (IR) drying, they can be effective on inactivation of microorganisms. We have reviewed in this study how these methods made dried products efficient of microbial inactivation and microbiologically safe.

摘要

随着干燥过程的进行,食品的水分活度和含水量降低,因此食品中微生物的生长在很大程度上得到抑制/延缓。但低水分活度食品不应被视为无菌食品,在不卫生条件下进行干燥过程中,它们可能会被真菌和其他污染物污染。如果在食品加工和储存过程中干燥未达到足够的水分程度,在干燥食品加工的地方,有时会达到微生物生长的最小值。在干燥食品中,一些病原体、酵母和霉菌在储存、运输直至销售过程中可能会继续生长,导致食品变质。如果有足够数量的病原体或孢子细胞仍具活力,它们甚至会引发健康问题。考虑到如今的这种情况,人们试图获得具有良好微生物和化学性质的高质量干燥食品。为此,已开发出各种干燥方法。大多数研究表明,当食品用抗坏血酸或焦亚硫酸钠进行预处理,或采用紫外线照射、超临界二氧化碳(SCO)、低压过热蒸汽干燥(LPSSD)和红外线(IR)干燥等各种联合方法时,它们对微生物的灭活有效。在本研究中,我们综述了这些方法如何使干燥产品实现高效的微生物灭活并具有微生物安全性。

相似文献

1
The microbiological quality of various foods dried by applying different drying methods: a review.
Eur Food Res Technol. 2021;247(6):1333-1343. doi: 10.1007/s00217-021-03731-z. Epub 2021 Apr 2.
2
Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables.
Compr Rev Food Sci Food Saf. 2016 Nov;15(6):1056-1066. doi: 10.1111/1541-4337.12224. Epub 2016 Sep 7.
3
Recent Developments in Superheated Steam Processing of Foods-A Review.
Crit Rev Food Sci Nutr. 2016 Oct 2;56(13):2191-208. doi: 10.1080/10408398.2012.740641.
4
Drying Characteristics and Microbiological Quality Assessment of Solar-Dried Tomato.
Int J Food Sci. 2022 Oct 28;2022:2352327. doi: 10.1155/2022/2352327. eCollection 2022.
5
Dehydrated foods: Are they microbiologically safe?
Crit Rev Food Sci Nutr. 2019;59(17):2734-2745. doi: 10.1080/10408398.2018.1466265. Epub 2018 May 22.
6
Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide.
Appl Environ Microbiol. 2017 May 1;83(10). doi: 10.1128/AEM.00062-17. Print 2017 May 15.
7
Why Does Cronobacter sakazakii Survive for a Long Time in Dry Environments? Contribution of the Glass Transition of Dried Bacterial Cells.
Microbiol Spectr. 2021 Dec 22;9(3):e0138421. doi: 10.1128/spectrum.01384-21. Epub 2021 Dec 15.
8
Comparison of different drying methods for bergamot peel: Chemical and physicochemical properties.
J Food Sci. 2024 Mar;89(3):1498-1516. doi: 10.1111/1750-3841.16944. Epub 2024 Feb 5.
9
Recent advances in drying and dehydration of fruits and vegetables: a review.
J Food Sci Technol. 2010 Jan;47(1):15-26. doi: 10.1007/s13197-010-0010-8. Epub 2010 Feb 6.
10

引用本文的文献

3
The Application of Cold Plasma Technology in Low-Moisture Foods.
Food Eng Rev. 2023;15(1):86-112. doi: 10.1007/s12393-022-09329-9. Epub 2023 Jan 3.
10
Validation of a Passive Solar Drying System Using Pineapple.
Foods. 2024 Sep 27;13(19):3081. doi: 10.3390/foods13193081.

本文引用的文献

1
Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables.
Compr Rev Food Sci Food Saf. 2016 Nov;15(6):1056-1066. doi: 10.1111/1541-4337.12224. Epub 2016 Sep 7.
3
Dehydrated foods: Are they microbiologically safe?
Crit Rev Food Sci Nutr. 2019;59(17):2734-2745. doi: 10.1080/10408398.2018.1466265. Epub 2018 May 22.
4
Microbiological Quality and Safety of Fresh Fruits and Vegetables at Retail Levels in Korea.
J Food Sci. 2018 Feb;83(2):386-392. doi: 10.1111/1750-3841.13992. Epub 2018 Jan 16.
5
Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents.
Open Microbiol J. 2017 Apr 28;11:53-62. doi: 10.2174/1874285801711010053. eCollection 2017.
6
Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs.
Food Microbiol. 2015 Oct;51:74-80. doi: 10.1016/j.fm.2015.05.004. Epub 2015 May 21.
7
Recent developments in high-quality drying of vegetables, fruits, and aquatic products.
Crit Rev Food Sci Nutr. 2017 Apr 13;57(6):1239-1255. doi: 10.1080/10408398.2014.979280.
8
Thermal inactivation of microorganisms.
Crit Rev Food Sci Nutr. 2014;54(10):1371-85. doi: 10.1080/10408398.2011.637645.
9
Mechanisms of survival, responses and sources of Salmonella in low-moisture environments.
Front Microbiol. 2013 Nov 14;4:331. doi: 10.3389/fmicb.2013.00331. eCollection 2013.
10
Low-water activity foods: increased concern as vehicles of foodborne pathogens.
J Food Prot. 2013 Jan;76(1):150-72. doi: 10.4315/0362-028X.JFP-12-211.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验