Suppr超能文献

自适应笛卡尔和扭转约束用于交互式模型重建。

Adaptive Cartesian and torsional restraints for interactive model rebuilding.

机构信息

Cambridge Institute for Medical Research, Keith Peters Building, Cambridge CB2 0XY, United Kingdom.

出版信息

Acta Crystallogr D Struct Biol. 2021 Apr 1;77(Pt 4):438-446. doi: 10.1107/S2059798321001145. Epub 2021 Mar 30.

Abstract

When building atomic models into weak and/or low-resolution density, a common strategy is to restrain their conformation to that of a higher resolution model of the same or similar sequence. When doing so, it is important to avoid over-restraining to the reference model in the face of disagreement with the experimental data. The most common strategy for this is the use of `top-out' potentials. These act like simple harmonic restraints within a defined range, but gradually weaken when the deviation between the model and reference grows beyond that range. In each current implementation the rate at which the potential flattens at large deviations follows a fixed form, although the form chosen varies among implementations. A restraint potential with a tuneable rate of flattening would provide greater flexibility to encode the confidence in any given restraint. Here, two new such potentials are described: a Cartesian distance restraint derived from a recent generalization of common loss functions and a periodic torsion restraint based on a renormalization of the von Mises distribution. Further, their implementation as user-adjustable/switchable restraints in ISOLDE is described and their use in some real-world examples is demonstrated.

摘要

在将原子模型构建到弱分辨率和/或低分辨率密度时,一种常见的策略是将其构象约束为相同或相似序列的更高分辨率模型的构象。在这样做时,面对与实验数据的不一致,避免过度约束参考模型非常重要。最常见的策略是使用“超出”势。这些势在定义的范围内类似于简单的谐波约束,但当模型与参考值之间的偏差超过该范围时,它们会逐渐减弱。在每种当前的实现中,势在大偏差处变平的速率遵循固定的形式,尽管所选形式在实现之间有所不同。具有可调变平速率的约束势将为编码任何给定约束的置信度提供更大的灵活性。在这里,描述了两种新的这样的势:一种源自最近通用损失函数推广的笛卡尔距离约束,以及一种基于冯·米塞斯分布重归一化的周期性扭转约束。此外,还描述了它们在 ISOLDE 中作为用户可调整/可切换约束的实现,并展示了它们在一些实际示例中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb4/8025879/15c6c5ea3c8a/d-77-00438-fig1.jpg

相似文献

1
Adaptive Cartesian and torsional restraints for interactive model rebuilding.
Acta Crystallogr D Struct Biol. 2021 Apr 1;77(Pt 4):438-446. doi: 10.1107/S2059798321001145. Epub 2021 Mar 30.
2
Conformation-dependent restraints for polynucleotides: the sugar moiety.
Nucleic Acids Res. 2020 Jan 24;48(2):962-973. doi: 10.1093/nar/gkz1122.
3
MMM: A toolbox for integrative structure modeling.
Protein Sci. 2018 Jan;27(1):76-85. doi: 10.1002/pro.3269. Epub 2017 Sep 4.
4
New model-fitting and model-completion programs for automated iterative nucleic acid refinement.
Acta Crystallogr D Biol Crystallogr. 2013 Jun;69(Pt 6):1171-9. doi: 10.1107/S0907444913007191. Epub 2013 May 16.
7
Biomolecular structure refinement based on adaptive restraints using local-elevation simulation.
J Biomol NMR. 2007 Dec;39(4):265-73. doi: 10.1007/s10858-007-9194-2. Epub 2007 Oct 11.
8
A number of real-space torsion-angle refinement techniques for proteins, nucleic acids, ligands and solvent.
Acta Crystallogr D Biol Crystallogr. 2001 Jan;57(Pt 1):82-94. doi: 10.1107/s0907444900014098.
10
Automated refinement of macromolecular structures at low resolution using prior information.
Acta Crystallogr D Struct Biol. 2016 Oct 1;72(Pt 10):1149-1161. doi: 10.1107/S2059798316014534. Epub 2016 Sep 30.

引用本文的文献

1
Virion morphology and on-virus spike protein structures of diverse SARS-CoV-2 variants.
EMBO J. 2024 Dec;43(24):6469-6495. doi: 10.1038/s44318-024-00303-1. Epub 2024 Nov 14.
2
Structural analysis of the dynamic ribosome-translocon complex.
Elife. 2024 Jun 18;13:RP95814. doi: 10.7554/eLife.95814.
3
Structure and tethering mechanism of dynein-2 intermediate chains in intraflagellar transport.
EMBO J. 2024 Apr;43(7):1257-1272. doi: 10.1038/s44318-024-00060-1. Epub 2024 Mar 7.
4
2.7 Å cryo-EM structure of human telomerase H/ACA ribonucleoprotein.
Nat Commun. 2024 Jan 25;15(1):746. doi: 10.1038/s41467-024-45002-x.
5
Putting AlphaFold models to work with phenix.process_predicted_model and ISOLDE.
Acta Crystallogr D Struct Biol. 2022 Nov 1;78(Pt 11):1303-1314. doi: 10.1107/S2059798322010026. Epub 2022 Oct 27.
6
Activation of the human insulin receptor by non-insulin-related peptides.
Nat Commun. 2022 Sep 28;13(1):5695. doi: 10.1038/s41467-022-33315-8.
7
Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization.
EMBO J. 2022 Aug 16;41(16):e110550. doi: 10.15252/embj.2021110550. Epub 2022 Jul 12.
8
How insulin-like growth factor I binds to a hybrid insulin receptor type 1 insulin-like growth factor receptor.
Structure. 2022 Aug 4;30(8):1098-1108.e6. doi: 10.1016/j.str.2022.05.007. Epub 2022 Jun 3.
9
Structural basis of human telomerase recruitment by TPP1-POT1.
Science. 2022 Mar 11;375(6585):1173-1176. doi: 10.1126/science.abn6840. Epub 2022 Feb 24.

本文引用的文献

1
UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
Protein Sci. 2021 Jan;30(1):70-82. doi: 10.1002/pro.3943. Epub 2020 Oct 22.
2
Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix.
Acta Crystallogr D Struct Biol. 2020 Jan 1;76(Pt 1):51-62. doi: 10.1107/S2059798319015134.
3
Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data.
Protein Sci. 2020 Apr;29(4):1069-1078. doi: 10.1002/pro.3791. Epub 2020 Mar 2.
5
Critical assessment of methods of protein structure prediction (CASP)-Round XIII.
Proteins. 2019 Dec;87(12):1011-1020. doi: 10.1002/prot.25823. Epub 2019 Oct 23.
6
Evaluation of template-based modeling in CASP13.
Proteins. 2019 Dec;87(12):1113-1127. doi: 10.1002/prot.25800. Epub 2019 Aug 20.
7
Structural basis of lipopolysaccharide extraction by the LptBFGC complex.
Nature. 2019 Mar;567(7749):486-490. doi: 10.1038/s41586-019-1025-6. Epub 2019 Mar 20.
8
ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps.
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):519-530. doi: 10.1107/S2059798318002425. Epub 2018 Apr 11.
9
CCP4i2: the new graphical user interface to the CCP4 program suite.
Acta Crystallogr D Struct Biol. 2018 Feb 1;74(Pt 2):68-84. doi: 10.1107/S2059798317016035.
10
Knowledge-Based Conformer Generation Using the Cambridge Structural Database.
J Chem Inf Model. 2018 Mar 26;58(3):615-629. doi: 10.1021/acs.jcim.7b00697. Epub 2018 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验