Suppr超能文献

基因组尺度差异通量分析揭示了 SARS-CoV-2 感染对肺细胞代谢的调控失调。

Genome Scale-Differential Flux Analysis reveals deregulation of lung cell metabolism on SARS-CoV-2 infection.

机构信息

Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India.

School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, India.

出版信息

PLoS Comput Biol. 2021 Apr 9;17(4):e1008860. doi: 10.1371/journal.pcbi.1008860. eCollection 2021 Apr.

Abstract

The COVID-19 pandemic is posing an unprecedented threat to the whole world. In this regard, it is absolutely imperative to understand the mechanism of metabolic reprogramming of host human cells by SARS-CoV-2. A better understanding of the metabolic alterations would aid in design of better therapeutics to deal with COVID-19 pandemic. We developed an integrated genome-scale metabolic model of normal human bronchial epithelial cells (NHBE) infected with SARS-CoV-2 using gene-expression and macromolecular make-up of the virus. The reconstructed model predicts growth rates of the virus in high agreement with the experimental measured values. Furthermore, we report a method for conducting genome-scale differential flux analysis (GS-DFA) in context-specific metabolic models. We apply the method to the context-specific model and identify severely affected metabolic modules predominantly comprising of lipid metabolism. We conduct an integrated analysis of the flux-altered reactions, host-virus protein-protein interaction network and phospho-proteomics data to understand the mechanism of flux alteration in host cells. We show that several enzymes driving the altered reactions inferred by our method to be directly interacting with viral proteins and also undergoing differential phosphorylation under diseased state. In case of SARS-CoV-2 infection, lipid metabolism particularly fatty acid oxidation, cholesterol biosynthesis and beta-oxidation cycle along with arachidonic acid metabolism are predicted to be most affected which confirms with clinical metabolomics studies. GS-DFA can be applied to existing repertoire of high-throughput proteomic or transcriptomic data in diseased condition to understand metabolic deregulation at the level of flux.

摘要

新型冠状病毒肺炎疫情给全世界带来了前所未有的威胁。在这方面,了解 SARS-CoV-2 宿主细胞代谢重编程的机制是绝对必要的。更好地了解代谢变化将有助于设计更好的治疗方法来应对 COVID-19 大流行。我们使用 SARS-CoV-2 的基因表达和大分子组成,开发了受 SARS-CoV-2 感染的正常人支气管上皮细胞(NHBE)的综合基因组规模代谢模型。该重建模型预测的病毒增长率与实验测量值高度吻合。此外,我们报告了一种在特定于上下文的代谢模型中进行基因组规模差异通量分析(GS-DFA)的方法。我们将该方法应用于特定于上下文的模型,并确定了受严重影响的代谢模块,主要包含脂代谢。我们对通量改变的反应、宿主-病毒蛋白质-蛋白质相互作用网络和磷酸化蛋白质组学数据进行综合分析,以了解宿主细胞中通量改变的机制。我们表明,我们的方法推断出的几种驱动改变反应的酶与病毒蛋白直接相互作用,并且在疾病状态下也经历差异磷酸化。在 SARS-CoV-2 感染的情况下,脂代谢,特别是脂肪酸氧化、胆固醇生物合成和β氧化循环以及花生四烯酸代谢,预计受到的影响最大,这与临床代谢组学研究结果一致。GS-DFA 可以应用于疾病状态下现有的高通量蛋白质组学或转录组学数据组合,以了解通量水平的代谢失调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25ff/8034727/488261a3947d/pcbi.1008860.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验