Suppr超能文献

利用单个介电纳米球对激子发射进行定向调制

Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres.

作者信息

Fang Jie, Wang Mingsong, Yao Kan, Zhang Tianyi, Krasnok Alex, Jiang Taizhi, Choi Junho, Kahn Ethan, Korgel Brian A, Terrones Mauricio, Li Xiaoqin, Alù Andrea, Zheng Yuebing

机构信息

Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.

出版信息

Adv Mater. 2021 May;33(20):e2007236. doi: 10.1002/adma.202007236. Epub 2021 Apr 9.

Abstract

Coupling emitters with nanoresonators is an effective strategy to control light emission at the subwavelength scale with high efficiency. Low-loss dielectric nanoantennas hold particular promise for this purpose, owing to their strong Mie resonances. Herein, a highly miniaturized platform is explored for the control of emission based on individual subwavelength Si nanospheres (SiNSs) to modulate the directional excitation and exciton emission of 2D transition metal dichalcogenides (2D TMDs). A modified Mie theory for dipole-sphere hybrid systems is derived to instruct the optimal design for desirable modulation performance. Controllable forward-to-backward intensity ratios are experimentally validated in 532 nm laser excitation and 635 nm exciton emission from a monolayer WS . Versatile light emission control is achieved for different emitters and excitation wavelengths, benefiting from the facile size control and isotropic shape of SiNSs. Simultaneous modulation of excitation and emission via a single SiNS at visible wavelengths significantly improves the efficiency and directionality of TMD exciton emission and leads to the potential of multifunctional integrated photonics. Overall, the work opens promising opportunities for nanophotonics and polaritonic systems, enabling efficient manipulation, enhancement, and reconfigurability of light-matter interactions.

摘要

将发光体与纳米谐振器耦合是一种在亚波长尺度上高效控制光发射的有效策略。低损耗介质纳米天线因其强烈的米氏共振在此方面具有特殊前景。在此,探索了一种基于单个亚波长硅纳米球(SiNSs)的高度小型化平台来控制发射,以调制二维过渡金属二卤化物(2D TMDs)的定向激发和激子发射。推导了一种用于偶极 - 球体混合系统的修正米氏理论,以指导实现理想调制性能的优化设计。在532nm激光激发和单层WS的激子发射635nm处,通过实验验证了可控的前后强度比。得益于SiNSs易于控制的尺寸和各向同性的形状,对于不同的发光体和激发波长实现了通用的光发射控制。在可见波长下通过单个SiNS同时调制激发和发射显著提高了TMD激子发射的效率和方向性,并带来了多功能集成光子学的潜力。总体而言,这项工作为纳米光子学和极化子系统开辟了有前景的机会,实现了光与物质相互作用的高效操纵、增强和可重构性。

相似文献

1
Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres.
Adv Mater. 2021 May;33(20):e2007236. doi: 10.1002/adma.202007236. Epub 2021 Apr 9.
2
Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas.
Nanotechnology. 2019 Jun 21;30(25):254004. doi: 10.1088/1361-6528/ab0daf. Epub 2019 Mar 7.
3
Observation of Room-Temperature Exciton-Polariton Emission from Wide-Ranging 2D Semiconductors Coupled with a Broadband Mie Resonator.
Nano Lett. 2023 Nov 8;23(21):9803-9810. doi: 10.1021/acs.nanolett.3c02540. Epub 2023 Oct 25.
4
Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS.
Adv Mater. 2022 Apr;34(15):e2108721. doi: 10.1002/adma.202108721. Epub 2022 Mar 10.
5
High Hybrid Mie-Plasmonic Resonances in van der Waals Nanoantennas on Gold Substrate.
ACS Nano. 2024 Jun 25;18(25):16208-16221. doi: 10.1021/acsnano.4c02178. Epub 2024 Jun 13.
6
Tunable Control of Interlayer Excitons in WS/MoS Heterostructures via Strong Coupling with Enhanced Mie Resonances.
Adv Sci (Weinh). 2019 Apr 2;6(11):1802092. doi: 10.1002/advs.201802092. eCollection 2019 Jun 5.
7
Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators.
Nat Nanotechnol. 2019 Jul;14(7):679-683. doi: 10.1038/s41565-019-0442-x. Epub 2019 May 6.
8
Nanophotonics with 2D transition metal dichalcogenides [Invited].
Opt Express. 2018 Jun 11;26(12):15972-15994. doi: 10.1364/OE.26.015972.
9
WS/hBN Hetero-nanoslits with Spatially Mismatched Electromagnetic Multipoles for Directional and Enhanced Light Emission.
ACS Nano. 2022 Jan 25;16(1):675-682. doi: 10.1021/acsnano.1c08154. Epub 2022 Jan 11.

引用本文的文献

1
Dielectric metasurfaces based on a phase singularity in the region of high reflectance.
Nanophotonics. 2025 Mar 18;14(8):1291-1300. doi: 10.1515/nanoph-2024-0700. eCollection 2025 Apr.
2
Unveiling the Potential of Redox Chemistry to Form Size-Tunable, High-Index Silicon Particles.
Chem Mater. 2024 Aug 28;36(22):10986-10993. doi: 10.1021/acs.chemmater.4c01439. eCollection 2024 Nov 26.
3
Million-Q free space meta-optical resonator at near-visible wavelengths.
Nat Commun. 2024 Nov 28;15(1):10341. doi: 10.1038/s41467-024-54775-0.
4
Three-Dimensional Optothermal Manipulation of Light-Absorbing Particles in Phase-Change Gel Media.
ACS Nano. 2024 Mar 19;18(11):8062-8072. doi: 10.1021/acsnano.3c11162. Epub 2024 Mar 8.
5
Routing the Exciton Emissions of WS Monolayer with the High-Order Plasmon Modes of Ag Nanorods.
Nano Lett. 2023 May 24;23(10):4183-4190. doi: 10.1021/acs.nanolett.3c00054. Epub 2023 May 9.
6
Van der Waals Heterostructures With Built-In Mie Resonances For Polarization-Sensitive Photodetection.
Adv Sci (Weinh). 2023 Mar;10(9):e2207022. doi: 10.1002/advs.202207022. Epub 2023 Jan 22.
7
Tunable Strong Coupling in Transition Metal Dichalcogenide Nanowires.
Adv Mater. 2022 Aug;34(34):e2200656. doi: 10.1002/adma.202200656. Epub 2022 Jul 22.
8
Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS.
Adv Mater. 2022 Apr;34(15):e2108721. doi: 10.1002/adma.202108721. Epub 2022 Mar 10.
9
Controlling the polarization of chiral dipolar emission with a spherical dielectric nanoantenna.
J Chem Phys. 2021 Dec 14;155(22):224110. doi: 10.1063/5.0072210.

本文引用的文献

3
Cascaded nanooptics to probe microsecond atomic-scale phenomena.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14819-14826. doi: 10.1073/pnas.1920091117. Epub 2020 Jun 15.
4
Quantum nanophotonics with group IV defects in diamond.
Nat Commun. 2019 Dec 9;10(1):5625. doi: 10.1038/s41467-019-13332-w.
5
Dark-Exciton-Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS at Room Temperature.
Small. 2019 Aug;15(31):e1900982. doi: 10.1002/smll.201900982. Epub 2019 Jun 11.
6
Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas.
Nanotechnology. 2019 Jun 21;30(25):254004. doi: 10.1088/1361-6528/ab0daf. Epub 2019 Mar 7.
7
Subwavelength integrated photonics.
Nature. 2018 Aug;560(7720):565-572. doi: 10.1038/s41586-018-0421-7. Epub 2018 Aug 29.
8
Directional lasing in resonant semiconductor nanoantenna arrays.
Nat Nanotechnol. 2018 Nov;13(11):1042-1047. doi: 10.1038/s41565-018-0245-5. Epub 2018 Aug 20.
9
Molecular-Fluorescence Enhancement via Blue-Shifted Plasmon-Induced Resonance Energy Transfer.
J Phys Chem C Nanomater Interfaces. 2016 Jul 14;120(27):14820-14827. doi: 10.1021/acs.jpcc.6b04205. Epub 2016 Jun 15.
10
Controlling Plasmon-Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules.
Small. 2017 Oct;13(38). doi: 10.1002/smll.201701763. Epub 2017 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验