Fang Jie, Wang Mingsong, Yao Kan, Zhang Tianyi, Krasnok Alex, Jiang Taizhi, Choi Junho, Kahn Ethan, Korgel Brian A, Terrones Mauricio, Li Xiaoqin, Alù Andrea, Zheng Yuebing
Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.
Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
Adv Mater. 2021 May;33(20):e2007236. doi: 10.1002/adma.202007236. Epub 2021 Apr 9.
Coupling emitters with nanoresonators is an effective strategy to control light emission at the subwavelength scale with high efficiency. Low-loss dielectric nanoantennas hold particular promise for this purpose, owing to their strong Mie resonances. Herein, a highly miniaturized platform is explored for the control of emission based on individual subwavelength Si nanospheres (SiNSs) to modulate the directional excitation and exciton emission of 2D transition metal dichalcogenides (2D TMDs). A modified Mie theory for dipole-sphere hybrid systems is derived to instruct the optimal design for desirable modulation performance. Controllable forward-to-backward intensity ratios are experimentally validated in 532 nm laser excitation and 635 nm exciton emission from a monolayer WS . Versatile light emission control is achieved for different emitters and excitation wavelengths, benefiting from the facile size control and isotropic shape of SiNSs. Simultaneous modulation of excitation and emission via a single SiNS at visible wavelengths significantly improves the efficiency and directionality of TMD exciton emission and leads to the potential of multifunctional integrated photonics. Overall, the work opens promising opportunities for nanophotonics and polaritonic systems, enabling efficient manipulation, enhancement, and reconfigurability of light-matter interactions.
将发光体与纳米谐振器耦合是一种在亚波长尺度上高效控制光发射的有效策略。低损耗介质纳米天线因其强烈的米氏共振在此方面具有特殊前景。在此,探索了一种基于单个亚波长硅纳米球(SiNSs)的高度小型化平台来控制发射,以调制二维过渡金属二卤化物(2D TMDs)的定向激发和激子发射。推导了一种用于偶极 - 球体混合系统的修正米氏理论,以指导实现理想调制性能的优化设计。在532nm激光激发和单层WS的激子发射635nm处,通过实验验证了可控的前后强度比。得益于SiNSs易于控制的尺寸和各向同性的形状,对于不同的发光体和激发波长实现了通用的光发射控制。在可见波长下通过单个SiNS同时调制激发和发射显著提高了TMD激子发射的效率和方向性,并带来了多功能集成光子学的潜力。总体而言,这项工作为纳米光子学和极化子系统开辟了有前景的机会,实现了光与物质相互作用的高效操纵、增强和可重构性。