Suppr超能文献

一种用于短期太阳辐照度预测的新型循环神经网络方法。

A novel recurrent neural network approach in forecasting short term solar irradiance.

机构信息

Department of Bio-systems Engineering, Gyeongsang National University (Institute of Smart Farm), Jinju 52828, Republic of Korea.

出版信息

ISA Trans. 2022 Feb;121:63-74. doi: 10.1016/j.isatra.2021.03.043. Epub 2021 Mar 29.

Abstract

Forecasting solar irradiance is of utmost importance in supplying renewable energy efficiently and timely. This paper aims to experiment five variants of recurrent neural networks (RNN), and develop effective and reliable 5-minute short term solar irradiance prediction models. The 5 RNN classes are long-short term memory (LSTM), gated recurrent unit (GRU), Simple RNN, bidirectional LSTM (Bi-LSTM), and bidirectional GRU (Bi-GRU); the first 3 classes are unidirectional and the last two are bidirectional RNN models. The 26 months data under consideration, exhibits extremely volatile weather conditions in Jinju city, South Korea. Therefore, after different experimental processes, 5 hyper-parameters were selected for each model cautiously. In each model, different levels of depth and width were tested; moreover, a 9-fold cross validation was applied to distinguish them against high variability in the seasonal time-series dataset. Generally the deeper architectures of the aforementioned models had significant outcomes; meanwhile, the Bi-LSTM and Bi-GRU provided more accurate predictions as compared to the unidirectional ones. The Bi-GRU model provided the lowest RMSE and highest R values of 46.1 and 0.958; additionally, it required 5.25*10 seconds per trainable parameter per epoch, the lowest incurred computational cost among the mentioned models. All 5 models performed differently over the four seasons in the 9-fold cross validation test. On average, the bidirectional RNNs and the simple RNN model showed high robustness with less data and high temporal data variability; although, the stronger architectures of the bidirectional models, deems their results more reliable.

摘要

预测太阳辐照度对于高效、及时地供应可再生能源至关重要。本文旨在实验五种变体的递归神经网络(RNN),并开发有效且可靠的 5 分钟短期太阳辐照度预测模型。这 5 种 RNN 类别为长短期记忆(LSTM)、门控循环单元(GRU)、简单 RNN、双向 LSTM(Bi-LSTM)和双向 GRU(Bi-GRU);前 3 种为单向,后 2 种为双向 RNN 模型。所考虑的 26 个月数据显示,韩国晋州市的天气条件极其不稳定。因此,在不同的实验过程后,每个模型都谨慎选择了 5 个超参数。在每个模型中,都测试了不同深度和宽度的级别;此外,还应用了 9 折交叉验证来区分它们在季节性时间序列数据集的高度可变性。一般来说,上述模型的更深层次结构具有显著的结果;同时,与单向模型相比,Bi-LSTM 和 Bi-GRU 提供了更准确的预测。Bi-GRU 模型提供了最低的 RMSE 和最高的 R 值,分别为 46.1 和 0.958;此外,它在每个训练参数的每个时期需要 5.25*10 秒的计算成本,是所提到的模型中最低的计算成本。在 9 折交叉验证测试中,所有 5 种模型在四个季节的表现都不同。平均而言,双向 RNN 和简单 RNN 模型在数据较少和时间数据变化较大的情况下表现出较高的鲁棒性;尽管双向模型的结构更强,但它们的结果更可靠。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验