Suppr超能文献

预测肥胖对结核病感染风险影响的人工神经网络

Artificial neural network to predict the effect of obesity on the risk of tuberculosis infection.

作者信息

Badawi Alaa, Liu Christina J, Rehim Anas A, Gupta Alind

机构信息

Public Health Risk Sciences Division, Public Health Agency of Canada, Toronto; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto.

Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto.

出版信息

J Public Health Res. 2021 Mar 15;10(1):1985. doi: 10.4081/jphr.2021.1985.

Abstract

BACKGROUND

Body weight has been implicated as a risk factor for latent tuberculosis infection (LTBI) and the active disease.

DESIGN AND METHODS

This study aimed to develop artificial neural network (ANN) models for predicting LTBI from body weight and other host-related disease risk factors. We used datasets from participants of the US-National Health and Nutrition Examination Survey (NHANES; 2012; n=5,156; 514 with LTBI and 4,642 controls) to develop three ANNs employing body mass index (BMI, Network I), BMI and HbA1C (as a proxy for diabetes; Network II) and BMI, HbA1C and education (as a proxy for socioeconomic status; Network III). The models were trained on n=1018 age- and sex-matched subjects equally distributed between the control and LTBI groups. The endpoint was the prediction of LTBI.

RESULTS

When data was adjusted for age, sex, diabetes and level of education, odds ratio (OR) and 95% confidence intervals (CI) for risk of LTBI with increased BMI was 0.85 (95%CI: 0.77 - 0.96, p=0.01). The three ANNs had a predictive accuracy varied from 75 to 80% with sensitivities ranged from 85% to 94% and specificities of approximately 70%. Areas under the receiver operating characteristic curve (AUC) were between 0.82 and 0.87. Optimal ANN performance was noted using BMI as a risk indicator.

CONCLUSION

Body weight can be employed in developing artificial intelligence-based tool to predict LTBI. This can be useful in precise decision making in clinical and public health practices aiming to curb the burden of tuberculosis, e.g., in the management and monitoring of the tuberculosis prevention programs and to evaluate the impact of healthy weight on tuberculosis risk and burden.

摘要

背景

体重已被视为潜伏性结核感染(LTBI)和活动性疾病的一个风险因素。

设计与方法

本研究旨在开发人工神经网络(ANN)模型,通过体重及其他与宿主相关的疾病风险因素来预测LTBI。我们使用了美国国家健康与营养检查调查(NHANES;2012年;n = 5156;514例LTBI患者和4642例对照)参与者的数据集,构建了三个ANN,分别采用体重指数(BMI,网络I)、BMI和糖化血红蛋白(作为糖尿病的替代指标;网络II)以及BMI、糖化血红蛋白和教育程度(作为社会经济地位的替代指标;网络III)。这些模型在n = 1018名年龄和性别匹配的受试者上进行训练,这些受试者在对照组和LTBI组中平均分布。终点是LTBI的预测。

结果

在对年龄、性别、糖尿病和教育程度进行数据调整后,BMI升高时LTBI风险的比值比(OR)及95%置信区间(CI)为0.85(95%CI:0.77 - 0.96,p = 0.01)。这三个ANN的预测准确率在75%至80%之间,敏感性范围为85%至94%,特异性约为70%。受试者工作特征曲线(AUC)下的面积在0.82至0.87之间。以BMI作为风险指标时,ANN的性能最佳。

结论

体重可用于开发基于人工智能的工具来预测LTBI。这对于旨在控制结核病负担的临床和公共卫生实践中的精确决策可能有用,例如在结核病预防项目的管理和监测中,以及评估健康体重对结核病风险和负担的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f14/7993018/1d6ea4b827f5/jphr-10-1-1985-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验